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Basic principles

Uncertainty principle: There is no way to determine a quantum state without measuring it.

Quantum superposition: Prior to measurement, all possible potential outcomes of the
measurement are valid. (Schrödinger’s cat!)

Quantum entanglement: In an entangled pair, measuring one object constrains the possible
states for the other object. (The second object’s unmeasured state must be
consistent with the first object’s measurement.)
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Quantum states

Definition

A quantum state is a line through the origin in a complex Hilbert space. (We usually
normalize quantum states to have unit norm.)

Example

Consider C2 with basis {|0⟩ , |1⟩}. Then, as quantum states,

1√
2
(|0⟩+ |1⟩) = − 1√

2
(|0⟩+ |1⟩)

̸= 1√
2
(|0⟩ − |1⟩)
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Measurement

Measuring a quantum state v =
∑

cibi with respect to an orthonormal basis {b1, . . . , bn}
yields bi with probability |ci |2.

Example

Suppose v = 1√
2
(|0⟩+ |1⟩).

Measuring v with respect to {|0⟩ , |1⟩} yields either |0⟩ or |1⟩, with probability 1
2 for each.

Measuring v with respect to
{

1√
2
(|0⟩+ |1⟩), 1√

2
(|0⟩ − |1⟩)

}
always yields 1√

2
(|0⟩+ |1⟩).
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Tensor products

We denote tensor products using concatenation, e.g.

|0⟩ ⊗ |0⟩ ⊗ |0⟩ = |0⟩ |0⟩ |0⟩ = |0, 0, 0⟩ = |000⟩ ∈ (C2)⊗3 = C8

|0⟩ ⊗ |0⟩ ⊗ |1⟩ = |0⟩ |0⟩ |1⟩ = |0, 0, 1⟩ = |001⟩ ∈ (C2)⊗3 = C8

...

|1⟩ ⊗ |1⟩ ⊗ |1⟩ = |1⟩ |1⟩ |1⟩ = |1, 1, 1⟩ = |111⟩ ∈ (C2)⊗3 = C8

By abuse of notation, we write |0⟩ = |000⟩ , |1⟩ = |001⟩ , |2⟩ = |010⟩ , etc.
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Quantum computation

Quantum computers operate on entangled particles (“qubits”).

On classical computers, a logic bit is either 0 or 1.

On quantum computers, a qubit is simultaneously 0 and 1.

A set of n qubits ranges simultaneously from 0 to 2n − 1.

Therefore, for any function f :

On a classical computer, computing f (0), f (1), . . . f (2n − 1) requires 2n operations.

On a quantum computer, computing f (0), f (1), . . . f (2n − 1) simultaneously requires one
operation:

2n−1∑
i=0

|i ⟩ →
2n−1∑
i=0

|i ⟩|f (i)⟩

Unfortunately, extracting the results of the computation requires a measurement, which
yields only one (random) output.
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Quantum computation

The allowed operations on quantum states are unitary operators. In particular, all such
operations are invertible, or reversible.

Example

Let f : Z/2n → Z/2n be a function. We can evaluate f on quantum states as follows (ignoring
normalization):

2n−1∑
i=0

|i ⟩|0⟩ 7→
2n−1∑
i=0

|i ⟩|f (i)⟩

This operation is reversible — we retain the input values i .

|i ⟩ and |f (i)⟩ are entangled. Measuring one of them constrains the other.

For example if we measure |i ⟩ and obtain |5⟩, then |f (i)⟩ must equal |f (5)⟩ — even
though it was not measured.
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Quantum algorithms

The most important quantum algorithms:

Grover’s algorithm: Inverts any function f : {0, 1}n → A in 2n/2 quantum operations.

Shor’s algorithm: Factors integers and finds discrete logarithms in a polynomial number of
quantum operations.
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Grover’s algorithm

Grover’s algorithm slightly affects the security of symmetric-key cryptosystems:

Brute-force attack against a k-bit key requires O(2k/2) quantum operations.

Collisions in k-bit hash functions require O(2k/3) quantum operations.

Attack applies to symmetric-key encryption schemes, MAC schemes, and hash functions.

Generally, doubling the key length restores security.
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Shor’s algorithm

Shor’s algorithm breaks most public-key cryptosystems in use today, including:

RSA

Diffie-Hellman

Elgamal

DSA/ECDSA/EdDSA
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Shor’s algorithm

To factor an integer N:

1 Choose Q such that N2 ≤ 2Q ≤ 2N2 (usually Q is unique).

2 Choose x ∈ Z∗
N . Let ord(x) denote the period of j 7→ x j .

3 Compute the quantum state

1√
2Q

2Q−1∑
j=0

|j ⟩
∣∣x j mod N

〉
.

4 Measure the second register, and discard the result.

5 Apply the quantum Fourier transform.

6 Measure the first register. Let z denote its value.

7 Then z/2Q is very very very close to c/ ord(x) for some c .

8 Use continued fractions to find c/ ord(x), and hence ord(x).

9 Factor N.
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Example (Credit: Srinivasan Arunachalam)

Suppose we want to factor N = 21.

1. Choose Q such that N2 ≤ 2Q ≤ 2N2 (Q = 9).

2. Choose x ∈ Z∗
N (say x = 2).

3. Compute the quantum state

1√
512

511∑
j=0

|j ⟩|0⟩ 7→ 1√
512

511∑
j=0

|j ⟩
∣∣2j mod N

〉
4. Measure the second register. Suppose we get |2⟩. The quantum state is now

1√
86

(|1⟩+ |7⟩+ . . .+ |505⟩+ . . .)|2⟩ = 1√
86

85∑
k=0

|6k + 1⟩|2⟩
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5. Apply the quantum Fourier transform.(
1√
86

85∑
k=0

|6k + 1⟩|2⟩

)
QFT7→ 1√

512

511∑
j=0

( 1√
86

85∑
a=0

e
−2πij(6a+1)

512 |j ⟩
)
|2⟩

Prob(j) =
1

512× 86

∣∣∣ 85∑
a=0

e−2πi 6ja
512

∣∣∣2
The DFT plots the frequencies which occur in the input distribution.

David Jao (UWaterloo) Quantum algorithms August 14, 2023



Obtaining ord(x)

6. Measure the first register. Suppose we get |85⟩. (The peaks are at 0, 85, 171, 256, 341,
and 427.)

7. 85
512 is very close to c

r for some r = ord 2 ≪ 2Q = 512.

8. Use continued fractions to find ord(2).

85

512
=

1

6 +
1

42 +
1

2

≈ 1

6

Hence ord(2) = 6. We verify that 26 ≡ 1 (mod 21).
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Completing the factorization

9. ord(x) is usually very close to ϕ(n) = (p − 1)(q − 1). (If not, try again with another x .)

For n = 21, we have ϕ(n) = 12 and ord(x) = 6. (In general, ϕ(n)/ ord(x) is a small
integer k .)

Since ϕ(n) ≈ n, we can guess the value of k.

Given ord(x) and k = ϕ(n)/ ord(x), we can find ϕ(n).

Given ϕ(n) = (p − 1)(q − 1) and n = pq, solve for p and q.
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Factorization and the hidden subgroup problem

Definition

Given a group G and a subgroup H ⊂ G , we say a function f : G → X hides H if for all
g1, g2 ∈ G ,

f (g1) = f (g2) ⇐⇒ g1H = g2H.

The hidden subgroup problem is to find a generating set for H given f .

Example

For N ∈ Z and x ∈ Z∗
N , the function f : Z → ZN defined by f (j) = x j mod N hides H = rZ,

where r = ord(x).
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Quantum algorithms for hidden subgroup problems

Shor’s algorithm solves not only the integer factorization problem, but also the hidden
subgroup problem in any abelian group.

Finding isogenies in CRS/CSIDH amounts to a hidden subgroup problem in a dihedral group:

1 Express the complex multiplication operation (a,E ) 7→ a ∗ E as a group action of Cl(OD).

2 Express the group action inverse problem in Cl(OD) as a hidden subgroup problem in the
dihedral group Cl(OD)⋊ Z/2.

Kuperberg’s algorithm (arXiv:quant-ph/0302112) solves the dihedral hidden subgroup problem
(and hence breaks CRS/CSIDH) in quantum subexponential time.

See also “The dihedral hidden subgroup problem”, Imin Chen and David Sun,
arXiv:2106.09907.
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From isogenies to hidden subgroups

For a finite abelian group G , let G × X → X be any free and transitive group action.
(Example: (a,E ) 7→ a ∗ E )
We wish to compute group action inverses: Given x0, x1 ∈ X , find γ ∈ G such that
γx1 = x0.

Let ϕ : Z/2 → Aut(G ) be given by ϕ(b)(g) = g (−1)b .

Consider the function f : G ⋊ϕ Z/2 → X , f (g , b) = gxb.

Since the group action is free, we have

f (g1, b1) = f (g2, b2) ⇐⇒ b1 = 0, b2 = 1, and g−1
1 g2 = γ

or b1 = 1, b2 = 0, and g−1
2 g1 = γ

Hence f hides the subgroup {(0, 0), (γ, 1)} ⊂ G ⋊ϕ Z/2.
If we solve the hidden subgroup problem for f , then we will have found γ.
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Dihedral hidden subgroup problem

For simplicity, suppose G = Z/N and DN = Z/N ⋊ Z/2.
Suppose f hides the subgroup H = {(0, 0), (γ, 1)} ⊂ DN .

Form the state
1√
|DN |

∑
d∈DN

|d ⟩ |f (d)⟩

Measure the second register to obtain

1√
|(z , 0)H|

∑
d∈(z,0)H

|d ⟩ = 1√
2
(|(z , 0)⟩+ |(z + γ, 1)⟩

in the first register, for some random coset (z , 0)H. By abuse of notation, denote this
“coset state” by |(z , 0)H⟩.
We can generate lots of these coset states, for random cosets. (We have no control over
which cosets we obtain.)
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Quantum Fourier transform

Apply the quantum Fourier transform to the first coordinate:

|(z , 0)H⟩ = 1√
2
(|(z , 0)⟩+ |(z + γ, 1)⟩)

QFT7→ 1√
2N

∑
k∈ZN

(ζkzN |(k , 0)⟩+ ζ
k(z+γ)
N |(k , 1)⟩)

=
1√
N

∑
k∈ZN

ζkzN |k⟩ ⊗ 1√
2
(|0⟩+ ζkγN |1⟩)

Measure the first register to obtain |k⟩ for some k . The second register is

1√
2
(|0⟩+ ζkγN |1⟩)

Denote this quantum state by |ψk ⟩. We can generate lots of these states for random k ,
with no control over k (but we do know what k is for each such quantum state).
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Overall strategy

We now assume for (further!) simplicity that N is a power of 2. The strategy is as follows:

If we could construct

|ψk ⟩ =
1√
2
(|0⟩+ ζkγN |1⟩)

for k of our choice, then (for example) we could find
∣∣ψN/2

〉
= 1√

2
(|0⟩+ (−1)γ |1⟩).

Measure
∣∣ψN/2

〉
w.r.t.

{
1√
2
(|0⟩+ |1⟩), 1√

2
(|0⟩ − |1⟩)

}
to obtain the least significant bit

of γ.

Reduce to DN/2 and use induction to find γ.
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Combining states

We can exert limited control over |ψk ⟩ by combining states:

|ψp, ψq⟩ =
1

2
(|0, 0⟩+ ζpγN |1, 0⟩+ ζqγN |0, 1⟩+ ζ

(p+q)γ
N |1, 1⟩

CNOT7→ 1

2
(|0, 0⟩+ ζpγN |1, 1⟩+ ζqγN |0, 1⟩+ ζ

(p+q)γ
N |1, 0⟩

=
1√
2
(|ψp+q, 0⟩+ ζqγN |ψp−q, 1⟩)

We now measure the second register.

If we get |0⟩, then the first register is |ψp+q⟩.
If we get |1⟩, then the first register is ζqγN |ψp−q⟩ = |ψp−q⟩.

We can’t control which of |ψp±q⟩ we get, but we know which one we got.
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Kuperberg sieve

1 Create A ≈ 4
√
logN quantum states ψk , for random k ∈ ZN .

2 Group the quantum states into buckets according to their last
√
logN bits (least

significant bits). On average each bucket has A/2
√
logN quantum states and there are

2
√
logN buckets.

3 Combine pairs of states in each bucket, with the goal of zeroing out the last
√
logN bits.

On average, combining states succeeds half the time.
If successful, we destroy two states and create one new state.
If unsuccessful, we lose two states and create nothing.
On average, we have 1/4 as many states as we had before.

4 We get A/4 quantum states, whose last
√
logN bits are zero.

5 Repeat this bucket sorting process on the next
√
logN bits, to obtain A/42 quantum

states, whose last 2
√
logN bits are zero.

6 . . . Eventually we obtain A/4
√
logN ≈ 1 quantum states, with all but the most significant

bit zero.
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