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Abstract

Resilient and correlation-immune functions were introduced in the mid-
1980’s, and have been studied by several researchers. In this paper, we sur-
vey the progress that has been made concerning three conjectures on resilient
functions.

1 Introduction

The concept of resilient functions was introduced independently in the two papers
Chor et al {4] and Bennett, Brassard and Robert [1]. Here is the definition. Let
n > m > 1 be integers and suppose

F:{0,13" = {0,1}™.

We will think of f as being a function that accepts n input bits and produces m output
bits. Let # < n be an integer. Suppose (z1,...,z.) € {0,1}*, where the values of ¢
arbitrary input bits are fixed by an opponent, and the remaining n — £ input bits are
chosen independently at random. Then f is said to be t—resilient provided that every
possible output m—tuple is equally likely to occur. More formally, the property can
be stated as follows: For every t—subset {i1,...,%,} C {1,...,n}, for every choice of
z; € {0,1} (1 £ j <¢), and for every (y1,...,ym) € {0,1}™, we have

p(f(z1,. .. 20) = (yl-."‘-,ym)[xij =z,l<j<t)= Qim
We will refer to such a function f as an (n,m,t)—RF.

A closely related concept is that of a correlation-immune function, which was de-
fined by Siegenthaler in [17] and further studied in [16, 11, 3]. A balanced correlation-
immune function is the same thing as an (n,1,t)—RF.

Here are some examples of resilient functions from [4] (all addition is in Z,):
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(1) An (n,1,n — 1)-RF: Define f(z1,...,2.) =21+ ...+ Zs.
(2) An (n,n — 1,1)—RF: Define f(zy,...,2,) = (21 + 22,72 + T3, ..., Tn-1 + Tn).
(3) A (3h,2,2h — 1)—RF: Define

f(a:l,...,z:;;h) = ($1+...+$2h,$h+1 ++2’I3h)

Some applications of resilient functions are mentioned in (1] and [4]. One applica-
tion concerns the generation of shared random strings in the presence of faulty pro-
cessors. Another involves renewing a partially leaked cryptographic key (one setting
in which this would be relevant is quantum cryptography [2]). Correlation-immune
functions are used in stream ciphers as combining functions for running-key generators
that are resistant to a correlation attack (see, for example, Rueppel [16]).

Interesting results on resilient functions can be found in several papers, e.g. [1, 4,
7, 18, 10, 19]. The basic problem is to maximize ¢ given m and n; or equivalently, to
maximize m given n and . In fact, all three of the examples above are optimal. It
is easy to see that n > m + ¢, so the first two examples are optimal. The result that
t < {2] if m = 2 is much more difficult; it was first proved in [4].

In this talk, we will survey some recent results on existence and bounds for resilient
functions. In particular, we will discuss progress on three conjectures made in papers
by Chor et al [4] and Bennett et al [1).

_ Our treatment will use an orthogonal array characterization of resilient functions
that was given in [18]. An orthogonal array O A,(t, k,v)is a Av* x k array of v symbols,
such that in any t columns of the array every one of the possible v* ordered pairs of
symbols occurs in exactly A rows. .
_ An orthogonal array is said to be simple if no two rows are identical. A large
set of orthogonal arrays OA,(t, k,v) is defined to be a set of v*~*/X simple arrays
OA,(t, k,v) such that every possible k—tuple of symbols occurs in exactly one of the
OA’s in the set. (An equivalent statement is that the union of the OA’s forms an
OAx(k, k,v).)

Here is the characterization proved in [18].

Theorem 1.1 An (n,m,t)—resilient function is equivalent to a large set of orthogo-
nal arrays OAgn-m—(t,n,2).

The correspondence between resilient functions and orthogonal arrays is this: for
any k—tuple {(y1,...,y%), the inverse image f~'(y1,...,y%) of an (n,k,t})—RF, f, is
an orthogonal array O Ayn-x-¢(t,n,2); and the 25 OA’s thus obtained comprise a large
set.

We should mention another related cryptographic application of OA’s, namely
the perfect local randomizers of Maurer and Massey [14]. A perfect local randomizer
turns out to be equivalent to a single orthogonal array, whereas a resilient function
requires a large set.
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2 Non-linear resilient functions

The most important construction for resilient functions uses linear error-correcting
codes. Recall that a (linear) [n, k,d] code is a k—dimensional subspace C of (Z;)"
such that any two distinct vectors {codewords) in C have Hamming distance at least
d. If M is a k X n matrix whose rows form a basis for C, then M is called a generating
matriz for C.

A linear (n,m,t)—RF is one where every output bit is a linear function of the
input bits. :

Theorem 2.1 [1, 4] The ezistence of an [n,k,d] code is equivalent to the ezistence
of a linear (n,k,d — 1)—RF.

In [1], it was conjectured that if there exists an (n,m,t)—RF, then there exists
a linear (n,m,?)—RF. Recently, Stinson and Massey constructed an infinite class
of counterexamples to this conjecture using the (non-linear) Kerdock codes. The
smallest counterexample in the class is a non-linear (16, 8, 5)—RF which is constucted
from the famous Nordstrom-Robinson code. _ _

The result is based on constructing a non-linear resilient function from a non-
linear systematic code. We will use the notation (n, K, d) code to denote a binary
code C (not necessarily linear), where C C {0,1}", |C| = K, and any two codewords
have Hamming distance at least d. (Thus, an [n, k, d] code is also an (n,2*,d) code.)
- Suppose C is an (n, K,d) code in which there exist k co-ordinates such that every
possible k—tuple occurs in exactly one codeword within the k specified co-ordinates
(of course, this implies K = 2¥). Then C is said to be systematic.

The following result was proved in [19].

‘Theorem 2.2 If there exists a systematic (n, K,d) code, C, having dual distance d',
then there is an (n,n — k,d’ — 1)—RF, where K = 2*.

Note that the value of the distance, d, is irrelevant in this theorem. Further, this
result subsumes Theorem 2.1, since the dual code of an [r, k,d] code is a systematic
(n,2"* d*} code (for some d*) having dual distance d.

Theorem 2.2 was applied to the well-known Preparata codes [15] and Kerdock
codes {12]. The properties of these codes are also discussed in [13], where the following
results are proved.

Theorem 2.3 Let r > 3 be odd. The Preparata code P(r + 1) is a non-linear, sys-
tematic (271,227 ~2~2 6) code having dudl distance d' = 2" — 2012 The Kerdock
code K(r + 1) is a non-linear, systematic (27+,2%7%2 27 — 2r-1/2) code having dual
distance d = 6.

Applying Theorem 2.2, Stinson and Massey obtained resilient functions from these
codes as follows.

Theorem 2.4 [19] For any odd integer r > 3, there is a non-linear (27+1,2r+2,2" ~
20-1/2 _ 1)—RF and a non-linear (271,274 — 2r — 2,5)-RF.
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Example 1 The code P(4) is the same as K(4), and it is also known as the Nordstrom-
Robinson code. It is a (16,256,6) code which yields a large set of OA3(5,16,2)’s and
a (16,8,5)—RF.

Now, in order to disprove the conjecture made in [1],' we need to consider the
existence of linear RFs with the same parameters. Theorem 2.1 states that existence
of these (hypothetical) RFs are equivalent to existence of linear codes as follows:

linear (27+1,2r 42,27 —20-U2 _ 1) -RF & [2711,2r 42,27 — 20-1}/7] code
linear (27%1,2"* —2r — 2,5)-RF & [27*1 271 — 2r — 2, 6] code

It was proved in [8, Theorem 6.2] that there does not exist a [2771—1,27+1—2r—2, 5]
code for any odd integer r 2> 3. This immediately implies the nonexistence of a linear
code with the parameters of a Preparata code, since puncturing a [27+!, 271 —2r —2, 6]
code would produce a [27+1 — 1,271 —2r — 2, 5] code. Hence, there do not exist linear
(271,271 — 27 — 2,5)—RF’s for these values of r (note that these resilient functions
" are the ones derived {rom the Kerdock codes).

As well, it is known that a [64,12,28] code does not exist; hence, there is no linear
(64,12,27)—RF. We summarize this discussion as follows.

Theorem 2.5 [19]

(1) For any odd integer r > 3, a (27+1,27+! — 2r — 2, 5)—RF exists, but no linear
restlient function with these parameters exists.

(2) A (64,12,27)—RF exists, but no linear resilient function with these parameters
exists. : :

3 Symmetric resilient functions

A (n,m,t)—RF
f:{0,1}* — {0,1}™

is symmetric if, for every permutation 7 : {1,2,...,n} — {1,2,...,n}, we have

f(:rh L2y.-0, mn) - f(mar(l): mi‘r(?)} RN -Tfr(n))-
In 1985, Chor et al [4] conjectured that the only symmetric (n,1,1)—RFs are

and .
14 Z Iy
i=1

where the arithmeticis done in Z,. (Note that these two functions are in fact (n,1,n-—
1)-RFs.)

This conjecture was disproved by Gopalakrishnan, Hoffman and Stinson in [9]. In
fact, they found an infinite class of symmetric (r* — 2,1,2)—RFs (which are not of
the form given above), as stated in the following theorem.
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Theorem 3.1 [9] For any even integer r > 2, there exists a symmetric (r*~2,1,2)—RF
that is not the modulo—2 sum of the n inputs or its complement.

Here is a brief description of how to construct these RFs. First, let
f:{0,1}* — {0,1}
be a symmetric function. Then it is clear that there exists a function
g:{0,1,...,n} — {0,.1}

such that f(z) = g(w(z)) where w(z) denotes the Hamming weight of the n-tuple
z. This is because any two binary n—tuples with the same Hamming weight are
permutations of each other, and thus they yield the same output.

The following can be proved easily.

Theorem 3.2 There ezists a symmetric (n,1,t)—RF if and only if there exists a
function ¢ : {0,1,...,n} — {0,1} such that

(T

forallj, 0< 7 <t

By exhibiting a suitable function g, we can disprove the conjecture. First, define
a function f as follows:

: 0 if zis even
1@ —{ 1 if ¢ is odd.
Now, let n = r2 —2 where r > 2 is even, and define k = (n —7)/2. Define g as follows:

£G) = 1—g(t) fi=kk+ln—-korn—k+1
V= g(7) otherwise.

Then it is not difficult to prove that g gives rise to an (n, 1,2)—RF; see [9] for details.

Example 2 Suppose we take r =4, then k =5 and n = 14. We obtain the function
g where

(g(3):0 <i < 14) = (0,1,0,1,0,0,1,1,0,0,1,1,0,1,0).
This gives rise to a (14,1,2}— RF.
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4 Bounds on resilient functions

Another conjecture made in [4] was that if an (n,m,t)—RF exists, then

; 2m=1n

||

In [4], this conjecture was shown to be true for m = 1,2 {(and in these cases, the bound
is tight). The conjecture was also proved true in {4} for arbitrary m in the special
case of linear resilient functions. More recently, Friedman [7] proved the conjecture
in general by studying colourings of the n—dimensional boolean cube.

In fact, Friedman’s proof can be interpreted as a bound on orthogonal arrays.
These orthogonal array bounds can be derived in a straightforward way from the
well-known linear programming bounds of coding theory, which is work of Delsarte
[5, 6]. We describe this approach now.

The distance distribution of an (n,M,d) code, C, is defined to be the sequence
(Bo, Bu,. .., By), where

B; = %H(u,v) tu,v € C,d(u,v) =1}

Note that By =1 and B+ Bi+...+ B, = M.
For 0 < k < n, define

' 1 & )
B, = L 3" BR)

i=0

P(i) = é(—l)j (;) (Z :;)

is the value of the Krawtchouk polynomial Py(z) at integer i. The sequence

where

i

(By, By,...,B,)

is called the dual distance distribution of C. :
B, =0for1<i<d —1and B;, # 0, then d is called the dual distance of the
code C.

If C is linear then (By, B, ..., B.) is indeed the distance distribution of the dual
code C*, and d is the minimum distance of Ct. However, it turns out that even
when C is not a linear code, the dual distance d has combinatorial significance. The
following theorem describes the combinatorial significance of the dual distance d ; the
proof, due to Delsarte, can be found in [6].

Theorem 4.1 If we write the vectors in C as rows of an M X n array, then any set
of r < d —1 columns contains each r-tuple ezactly M/2" times, and d is the largest
number with this property. In other words, C is an orthogonal array OAx(d —1,n,2)
where A = M/?d"l.
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It is clear that for any code C, we have B; > 0 for ¢ = 0,1,...n. On the other
hand, it is a non-trivial theorem (see for example [6]) the B; > 0 for i = 0,1,...n.

Suppose an OA,(t,n,2) exists. Let M = A2' be the number of rows in this
orthogonal array. If we view the rows of this orthogonal array as codewords of a code
C, then a lower bound on M can be obtained by solving a suitable linear programming
problem (see [5] for similar approaches to a different problem).

We can formulate the following linear programming problem which we will refer
to as LP1:

Minimize B, + B, + -+ + B,
subject to

ZB;Pk(i) = “(:) for1 <k<t
=1

3" BiR(i) > —(2) fort+1<k<n

i=1

B;>0forl<:<n

Let B = B(n,t) be the optimal solution to the above linear programming problem.
Then we have

M=) B;>1+B R (1)
=0
Now let us return to our original problem of establishing stronger upper bounds
for the optimal value of t. Recall that an (n,m,t) resilient function exists if only if
LOAgn-m-:(t,n,2) exists. Clearly LOAgn-m-+(t,n,2) exists only if an OAzn-m-e(t,n,2)
exists. The number of rows in this orthogonal array is given by
M — 2n—m—t2t —_ zn-m.
In view of the bound of inequality (1), this immediately implies that
m < n —log,(1 + B).

In order to obtain explicit bounds on QA’s and resilient functions, it is more
convenient to work with the dual LP (which we name LP2), defined as follows:

n
.. n
Maximize ) | x;( )
i

=1

subject to

Y ziP(k)yz -lfork=1ton

t=1

x1,Ta,...T; unrestricted
Tipl, Teg2s. - Tn S0
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It is a standard theorem in the theory of linear programming that in a pair of
primal-dual linear programs the optimal value of the minimization problem will al-
ways be greater than or equal to the value attained by the objective function of the
maximization problem at any feasible solution vector. So any feasible solution to the
dual linear program LP2 yields a lower bound on the size of the orthogonal array of
strength ¢ and length n and consequently an upper bound on m of ¢-resilient functions
on n-tuples.

Consider the solution vector

14

Tyl

$;==1

It can be shown that this is a feasible solution for LP2. If we compute the objective
function, then it follows that

n?"“l

M21+B22"- .
zl+82 t+1

As a consequence, we get the following Theorem, which was first proved by Friedman
[7] using very different methods.

Theorem 4.2 If an (n,m,t)-resilient function ezists, then

gm=-1p,
1< — 1.
< |7

The power of this linear programming approach is that other bounds can be
obtained by finding other feasible solutions to LP2. For example, another feasible
solution is given by '

z;=1-—
(551
This gives rise to the following:
n_ 27(nt1)

As a consequence, we get the following new bound on RF’s.
Theorem 4.3 (Gopalakrishnan and Stinson) If en (n,m,t)-resilient function ez-
ists, then
2™~%(n + 1)
t<2|————-+~1-—1.
= { om 1 !

 As an illustration, let’s look at the optimal resiliency of resilient functions with
m = 3. The bound of Theorem 4.2 gives t < [4n/7] — 1 and the bound of Theorem
4.3 gives t < 2((2n 4+ 2)/7] — 1. We tabulate the two bounds as follows:
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n [4n/7] —1 2[(2n+2)/7| -1

Th 4h—1 4h —1
Th+1 4h-1 4h —1
Th+2 4h 4h —1
Th+3 4h 4h +1
Th+4 4k +1 4h +1
Th+5 4h+1 4h +1
Th+6 4h+2 4h +3

We see that Theorem 4.2 gives the strongest bound for n = 3,6 mod 7, Theorem
4.3 gives the strongest bound for n = 2 mod 7, and the two bounds are equal for
n=0,1,4,5mod 7.

Of course these are only upper bounds on f. But if we use known results on linear
~ codes to obtain lower bounds on t, then the following theorem results.

Theorem 4.4 (Gopalakrishnan and Stinson} The mazimum value of t such that
an (n,3,t)—RF exists is

ifn#2mod7

2
|4 -2 ifn=2mod T’

— ——
!
[y

By applying similar techniques for m = 4, we have been able to determine the
optimal resiliency for 13 of the 15 congruence classes modulo 15.
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Abstract

This paper presents some results on the cryptographic strength of Boolean functions from
the information theoretic point of view. It is argued that a Boolean function is resistant to
statistical analysis if there is no significant static and dynamic information leakage between .
its inputs and its output. We note that some conventional cryptographic criteria require zero
static or dynamic information leakage in only one domain. Such a requirement can resull in.
a large information leakage in another domain. To avoid this weakness, it is better to jointly
consirain all kinds of information leakage in the function. This approach can lead to the
discovery of cryptographically strong Boolean functions. In fact, we claim that information
leakage can be used as a fundamental measure of the strength of a cryptographic algorithm,

1 Introduction

The recent development of statistical attacks such as correlation attacks [1], differential
cryptanalysis [2], and linear ¢rypianalysis [3], has enhanced the success of cryptanalysis of
private-key cryptosystems. As a result, there has been considerable interest in the development
of cryptosystems that resist statistical cryptanalysis. Information theory can be an important
tool in this objective. Forré [4] suggested that it is desirable that a cryptographic transformation
minimize the mutual information between the inputs and outputs. This idea was further developed
by Dawson and Tavares [5] who proposed the information leakage measure for the design of S-
boxes. Recenily the measure was further applied to the construction of substitution-permutation
neiworks [6}.

In this paper, we present some results on the cryptographic strength of Boolean functions
from the information theoretic perspective. Boolean functions are the basic components from
which many private-key cryptographic transformations can be analyzed and constructed. The
cryplographic power of those transformations depends to a large extent on the strength of the
component Boolean functions. Conventionally, the strength of a Boolean function is evaluated by
cryptographic criteria such as 01 balance, completeness [7], Strict Avalanche Criterion (SAC)
[8], correlation immunity [9], nonlinearity [10], higher order SAC by Adams & Tavares [11, 12]
(also called propagation criterion [13]} and higher order SAC by Forré [14]. This paper relates
these criteria within the framework of information leakage.

Statistical analysis of a Boolean function aims at determining the statistical relationship
between the output and the inputs either statically or dynamically. A function is resistant
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to statistical analysis if no significant information leakage exists by both static and dynamic
measurement. In the information theoretic point of view, the nature of some conventional criteria
is to require zero mutual information between the output and a certain number of inputs, or zero
information leakage between the change of output and prescribed change patterns of the inputs.
These exact requirements often constrain the Boolean functions and may result in cryptographic
- weakness. So we suggest that a cryptographically good function does not necessarily satisfy
those criteria exactly. In fact, information leakage can be used as a fundamental measure of
the cryptographic strength of a Boolean function or cryptographic transformation and enables
the discovery of strong functions.

2 Definition of information leakage

Let Y = f(X) be a Boolean function of n variables, where X = (Xj,Xo2,...,Xu).
X1,X2,...,Xn are independent binary random variables equally likely to be zeros and
ones. The changes of input variables, denoted by AX:,AXs,...,AX,, are also assurned
to be independent and equiprobable random variables. The output change is defined by
AY = f(X@eAX)B f(X), where AX = (AX;,AXs,...,AX,). The XOR operation can be
applied to a group of £ (0 < k < n) distinct input variables Xy = (Xj,,...,Xj,), and the result
Y X=X, & X, @ ...8 X, is called the sum of the k variables. Let AXy, denotes the change
of Xy. Finally, x and Axy represent the value of Xy and AXjy respectively.
A cryptographic function is resistant to statistical analysis if the predictability of the output
and output change is poor without complete information about the inputs. Using information
theory, the unpredictability can be measured by the conditional entropy of the output variable(s)
~ or the change(s) of output variable(s). Conversely, information leakage may be used as a measure
of the predictability of the variables. We define two general types of statistical analysis—static
analysis and dynamic (or differential) analysis. By static analysis, we include all methods of
determining the statistical relationship between the inputs and outputs of a transformation. By
dynamic or differential analysis, we include all means of determining the statistical relationship
between the difference in the inputs and the difference in the outputs. For example, the correlation

attacks and linear cryptanalysis use the static analysis, and the differential cryptanalysis uses the
dynamic analysis. We classify information leakage into static and dynamic information leakage
(abbreviation: SL, DL) in order to demonstrate their different roles in measuring the vulnerability
10 two types of statistical analysis.

When the value of Xy is given by x;, we may write the entropy of ¥ as H(Y|Xy = xi).
Then the entropy H(Y'|Xy) is the probability average of H{Y|Xy = xy) over all xx € Z&,
Similarly, H(AY|aXy) is the probability average of H(AY |aXy = Axy) over all Axy € ZF,
Using the notation defined above, we introduce the following measurements of information
leakage.

Definition 1 Let Y be the output of a Boolean function, then the static information leakage
of Y, given input vector xy, is defined by

SLY; Xypey) =1 - H(Y [Xy = xi) . (b
Similarly, the dynamic information leakage of Y, given input change vector Axy, is defined by
- DL(AY; AXg|Axy) =1 ~ H(AY|AX} = Axy) . (2)
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Definition 2 The static/dynamic information leakage between Y = f(X) and Xy is defined
by
SL(Y;Xy) =1~ H(Y[Xy) (3)
or  DL{AY;AXy) =1- HAY|aXy). ()]
The seif static{/dynamic information leakage of Y, defined by SL(Y) = 1 — H(Y) or

DL{AY) =1— H(AY), can be considered as the static/dvnamic information leakage in the
case of k = 0.

Remarks: When &£ =n, SL(Y; Xy|xy) becomes SL(Y; X|x), which is always equzil to 1.
As well, SL(Y;X) = 1. In this case, the inputs are completely known, yvielding no uncertainty
in the output.

Notice that since all input variables and their changes are independent and equally likely to
be zeros and ones, the above two definitions are related by

SL(Y;Xy) =27 F VSL(Y; Xubxi), (5)
DL(AY; AXy) = 27 T SL(aY; aXy|axy) , ©
axy

where the summation is over all values of x; or Axg. Using mutual informa-

tion I(Y;Xy) and J(aY;aXy), it follows from H(Y|Xy) = H(Y)} - I(Y;Xy) or

H(aY|aXy) = HAY) — I(AY; AXy) that

o SL(Y;Xy) =1 - HY) + I(Y; Xy) 0
DL(AY;0X5) =1 - H(AY) + I(AY; aXy) . &

Hence the above defined information leakage is equivalent to mutual information if and only

if the Boolean functions are balanced. Otherwise, it equals the mutual information plus self
information leakage_.

Proposition 1 Information leakage increases when more input variables are given. Precisely,
SL(Y;Xy) 2 SL(Y; Xg-1) and DL(AY;8Xy) > DL(AY; Xy ) .
Proof: By the chain rule [15, Th.2.5.2], we have
I(Y; Xi) = T(Y5 Xieer) + 20V 6, [Kicma) 2 1V Kieon) ©

Following (7), it is obvious that adding 1 — H(Y) to both sides of above in-
equality vyields SL{Y;Xy)> SL(Y;Xy—1). By similar derivation, we can get
DI(AY;AXy) > DL(AY;8Xy ) . O

Definition 3 The static information leakage of Y, given the sum of input variables
Y X =8,(8 € Zy), is defined by

SL (Y;EkXLB) =1- H(Y[zkx = ,3) . (10)

Remarks: If for fixed & and all choices of Xy, SL(Y;Xy) = 0, then the function ¥ = f(X)
satisfics zero static information leakage of order k. Such a function has maximum entropy
H(Y|Xy) = L, and hence satisfies #(Y|y,X = §) = 1 for all § € Z;. In other words,
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SL (Y; 5,X]8) =0 (8 = 0,1) follows from SL(Y;Xy) = 0. By Proposition 1, it is obvious
that zero static information leakage of order k includes zero static information leakage of order
less than k. Therefore, the function has no static information leakage when k or less input
variables are known.

3 Static information leakage and its relation fo cryptographic criteria

Static information leakage measures the vulnerability of a function to static analysis. If there
is no significant static information leakage between the output and the partially given inputs, the
function is resistant to static analysis. Cryptographic properties that resist static analysis should
act in some way to reduce static information leakage. To show this, we characterize the causes
of static information leakage.

Theorem 1 Let f(X,_x|xy) be the sub-function obtained from f(X) by fixing Xy at value
Xy, where X, _y denotes the set of variables obtained from X with components X;, X;, ... X;,
removed. Let Ny and Ny denote the number of 0's and 1's respectively in the oulput sequence
of the sub-function. Define coefficient r(xy) = [Ny — N3|/(No + N1} as the balance coefficient
of sub-function f(Xa_x|xy). Then : '

2 2
where h(-) is the binary entropy function, h(t) = —tlogat — (1 —t)log, (1 = t).

SL(Y; Xalaa) = 1 - h(i _ "(’“‘)) , an

Proof: The probabilities that a sub-function Y/ = f{X,_x|xx) is 0 or 1 are computed by:
N _ 1 n Ny — Ny
N+ Ny 2 2 (No + N1)° .

: 1 ng - .tvl
Y’ = ]. e e . 1
o )=3"3 (Vo + 1) (13)

Consequently, H(Y|Xy = xy) = h(p(Y' = 1)) = ~(1/2 — r(x)/2). Applying above results to
(1) yields the theorem. _ ' |

p(Y'=0) = (12)

It may be seen that SL{Y; Xy|xi) = 0 if and only if the balance coefficient r(xy) is zero,
and the value of SL(Y; Xy|xy ) increases if the coefficient increases. In general, SL(Y;Xy) =0
if and only if all the sub-functions obtained from f(X) by fixing Xy are balanced. From this,
we conclude that the static information leakage between the output and given inputs is caused
by the imbalance of its sub-functions.

The relationship between information leakage and the 0-1 balance criterion is clear. A func-
tion Y = f(X) is called 0-1 balanced if it has an equal number of 0’s and 1°s in the output se-
quence. (-1 balance is achieved if and only if SL(Y') = 0. Consider AY = f(X ¢ AX) & f(X)
being a function with two sets of inputs X and AX. Since f(X) is balanced, the function
F(X & aX) s f(X) must also be balanced. As a result, H(AY) =1 (or DL{AY) = 0). Thus
the 0-1 balance criterion is equivalent to zero self information leakage.

The self information leakage is of inierest since it measures the vulnerability to statistical
analysis when no information about the inputs is available. If partial information about the
inputs is available up to #-1 bits, static information leakage between the output and arbitrary
n-1 input variables would be one of our main concems because it reflects the vulnerability to
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static analysis in one of the the worst cases. It is proved in Proposition 1 that more information
about inputs yields more information leakage.

Theorem 2 With random inputs X, suppose the output Y changes with probability p;, when
X;, is complemented, then SL(Y;Xgp_1) = 1 — p;,, where Xyn_1 denotes the set of variables
obtained from X with component X;, removed.

Proof: Following Theorem 1, sub-function f(X;_ |xp—1) is obtained from f(X) by fixing
X1 at the value x5_1, and there are two bits in the output sequence, If Y changes when X,
is complemented, the balance coefficient r{xn-1)} is 0. Otherwise, the coefficient is 1. Also the
binary entropy function £(-) satisfies 2(1/2) = 1 and A(0} = 0. As a resul,

5 (l B r(xn_l)) _ { 1, Y changes when X;_ is complemented

2 2 0, Y doesn’t change when X;_ is complemented (14)

Applying all possible input value xy_1 and letting 5 be the total number of times that Y changes
when X, is complemented, yiclds

2= ¢ (% - r(x“_l)) - 2:—1 = Pin - a3

Xp-1 2

Replacing & with n-1 in equation (5) and then combining it with equation (11) and (13), we get
. Theorem 2. 0

All functions, with some known exceptions, are most vulnerable to static analysis when
arbitrary n-1 input bits can be exposed, ignoring the trivial case where all inputs are given,
Limiting the static information leakage between the output and every choice of n-1 input
variables is important to the security of a function. It follows from Theorem 2 that p;, = 0
yields SL(Y;Xn-1) = 1. In other words, if Y is independent of X;,, the knowledge of the
other n-1 input variables completely gives away the output. Then the function degenerates into
ant (n-1)-input function. To avoid this situation, the completeness criterion must be satisfied.
The completeness criterion requires that ¥ depend on every input variable. It guarantees p;, > 0
for all ¢, 1 < ip, < n. Obviously, an equivalent description of the completeness criterion is that
the static information leakage between the output and every n-1 input variables is less than 1 bit.

The strict avalanche criterion requires the output Y changes with a probability 1/2 whenever
a single input variable is complemented. Its relationship with static information leakage is
described in the following corollary.

Corollary 2.1 A function satisfies the sirict avalanche criterion if and only if
SL(Y;Xn-1) = 1/2 for all choices of n—1 input variables Xyn-1.

Further than the completeness criterion, the strict avalanche criterion consirains the static
information leakage between the output and every n—1 input variables to 1/2 bit, so the function
can not be approximated by an (»-1)-input sub-function.

Theorem 3 The static information leakage SL{Y ; Xy) is equal to the self static information
leakage 1 — H(Y') if and only if the mutual information I(Y; Xy) is zero.

Proof: The theorem follows from (7). 0
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Reducing the mutual information between the output and the inputs could result in a reduction
of static information leakage between the output and given inputs. In the extreme case where
mutual information is zero, a function satisfies the correlation immune criterion. By definition,
function Y = f(X) is k-th order correlation immune if every k-tuple obtained by choosing
components from X is statistically independent of ¥'. Using the notation of mutual information,
we may refer to the k-th order correlation immunity as I{Y'; Xy) = 0 for all every choice of
. k distinct variables. In equation (7), it is clear that the k-th order correlation immunity reduces
static information leakage SL(Y"; Xy ) to self static information leakage of Y.

Carollary 3.1 For an arbitrary choice of Xy, the siatic information leakage SL(Y; Xy) is
equal to the self static information leakage 1 — H(Y') if and only if function Y = f(X) is k-th
order correlation immune.

A k-th order correlation immune function can still have large static information leakage if the
~ function is unbalanced. Balancing the correlation immune function would give us a k-resilient

function, which is defined by Chor et al. [16] as follows: a function f(X) is k-resilient if every.
- possible output is equally likely to occur when the values of k arbitrary input bits are fixed by
an opponent, and the remaining n—k bits are chosen independently at random.

~ Corollary 3.2 A function has zero static information leakage of order k if and only if it is
a k-resilient function.

_ Corollary 3.2 makes it clear that a function with zero static information leakage of order n-1

is an (n-1)-resilient function, Such a function is (»~1)-th order correlation immune, According
to Siegenthaler [9], the (n—1)-th order correlation immune functions are non-degenerate affine
functions. Therefore, only non-degenerate affine functions have no static information leakage
up to order (n-1).

However, functions with a high order of zero static information leakage are not necessarily
stronger against statistical analysis than functions with a low order. This is because a high
order of zero static information leakage may cause a large static information leakage between
the output and the given sum of input variables. For example, a nondegenerate affine function
has no static information leakage up to order (n~1). Then trouble arises at & = n, where
SL(Y;Y.:X|8) =1 for 8 = 0,1. In fact, there exists a trade-off between the obtainable order
of zero static information leakage and the obtainable lowest bound on the static information
leakage of output by given sumns of input variables. This is discussed in [17].

Introduce the notation Neg = #{x: fH)=a Tix= ﬁ}, where #{-} denotes the
cardinality of the enclosed set and «,8 € Z;. Since the linear function 5(Xy) = > X is
balanced, Nog + Nig = 2" follows. We can write

AN Nog  \ _ oL _ |Nog— Nig|
nrzx=0) = H(miy) (i) e

and hence

Nog — N, —
SL(Y; ¥, X18) =1—h(%WW) . an
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Theorem 4 Let ly and Iy be two arbitrary integers in the range 0 < Iy, 1} < 2", If the
information leakage SL(Y'; 3 X|8), (8 = 0,1), is limited by

SL(Y; 5, XI0) < 1- k(% - 2'_'_1) | 18y

d
. SL(Y;EkX[l) <1- h(% - 2’-},) (19)
then _ a1 lo+h '
min {d(f(X}, (X)), d(f(X),5(Xy))} > 2*"1 - — (20)

where d(-,-) denotes the Hamming distance, and B Xy} denotes the complement of b(Xy).

Proof: Inequalities (18) and (19) are true if and only if |Nyp— Neo| < Ip and
!JVQI e Arnl S ll, which y1€]dS —(Ig -E-Il) S .Nm + ivl() — (JVO[) +1V11) S 20 + 11.
Since Ngp + N + Noo + N1 = 2", we have Ny + Nyp > 2% — (I + 4)/2 and
Noo + N1 2 271 - (I + 11)/2. The Noy + Nyp equals the Hamming distance from f(X)
t0 b(Xy) and the Nyy + Nyy equals the distance from f(X) to 5(Xy). O

Thus, for any function ¥ = f(X), it is impossible to limit the static information leakage
SL(Y;3:.X|8), (8 = 0,1), unless there are adequate distances from f(X) to the linear function
b(Xy) and B(Xy). Considering the resistance to static analysis, static information leakage
between the output and the sum of input variables is equally undesirable no matter which and
how many input variables are added up. To constrain this static information leakage in all cases,
it is.necessary that a function has adequate distance to all affine functions, The nonlinearity
of f(X) is defined as the minimum Hamming distance between f(X) and all affine functions.
Obviously high nonlinearity is a necessary (not sufficient) condition for a function to avoid large
static information leakage between the output and the sum of input variables.

4 Dynamic information leakage and it relation to cryptographic criteria

Dynamic information leakage measures the vulnerability of a function to differential analysis.
We discuss the cause of dynamic information leakage by means of autocorrelation function.

Definition 4 The autocorrelation function of (-1 is a mapping ©(-): Z7 ~ [-1,1]
defined by:
m(aX) = 27" T (—1)/ xBaX)Bf), @en

For brevity, we call x(AX) the autocorrelation function of f(X) and x(Ax) the autocorre-
lation coefficient of f(X) , where Ax denotes the value of AX. If Ax # 0, Ax is also called
the input change pattern. Note that, z(0) = 1 .

Let m{AX,_x|Axy) be the sub-function of 7{AX) obtained by fixing AX} at Axy, where
AXy_x denotes the set of variables obtained from AX with components AX; AX,...AX;,
removed. Applying all possible value of AX;_y to the sub-function, we get 2*—* autocorrelation
coefficients of f(X). Let #{Axy) be the absolute value of the average autocorrelation over these
on—k coefficients, we may write

Flaxy) =25 Y m(AXn_x|AXy)

BXp i

. (22)
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Note if k = n, F(axy) = F(AX) = [r(Ax)|.

Theorem 5 With partial average autocorrelation coefficient T{Axy) given by equation (22),
the dynamic information leakage of Y, given input change vector Axy, satisfies

DL(aY; aXy|Axy)=1— h(-;— - r(&;k)) . (23)
In particular if k =
DL(aY;aX|Ax)=1-— h(-;— - 1"’(2"”) 24)
Proof: ASuppose Axy is given, we define .
No = #{x & Axy_y pairs: AY = f(x @ (Axy, Axy_k)) D f(x) =0}, (25)
Ni=#{x & Axn_y pairs: AY = f(x ® (Axy, AXp-x)) @ f(x) = 1]}. (26)

For given Axy, the probability of AY =0 is Ny / (No + Nl). Then we have

. V 1 JGO — JG]_
H(AY}AXk = Axk) =h T-J---g--z.— =hl =~ l - — I . (27)
. Ng + M 2 2 M+ M

Subtracting and adding Np and N; yields
No-FNi= % z( 1)f B(o%, 0% )BF(X) = 9™ T 7(Axy_k|AXY) (28)

LXp ok . AXp ok
and 9
4N0 + N1 =2 n-k (29)
Applying equation (28) and (29) to (27) and then using (22), we get
H(AY|aXy = axy) = h(% - (A;“‘)) . (30)
Replacing the right-hand side of equation (30) into (2), we get equation (23). Since
T(Axy) = |[r(Ax)|, equation (24) is deduced from (23) by setting & = n. O

It follows from Theorem 5 that DL(AY; AXy|Axy) = 0 if and only if F(axy) =
and the increase of 7{Axy) results in the increase of DL(AY; AXy|Axy). In particular,
DL(aY;aX]ax) = 0 if and only if #(Ax) = 0. In other words, the dynamic information
leakage between the output and any k (k < n) inputs is zero if and only if the autocorrelations of
f(X) cancel out over all coefficients «(Ax) with those k bits of Ax fixed by an arbitrary value,
The dynamic information leakage between Y and X is zero if and only if ¥ = f(X) is not
autocorrelated in any cases. Thus we claim that the dynamic information leakage between
Y and any £ (1 < k < n) input variables is caused by the nonvanishing partial average
autocorrelations of function f(X). The dynamic information leakage between Y and X is
caused by autocorrelations of f{X).

Cryptanalysis often uses chosen plaintexts. By differentiating the plaintexts, the input
changes of a transformation are completely known, So it is supposed that the changes of all
input variables are obtainable in differential analysis. We judge the vulnerability of a function
to differential analysis by DL(AY; AX|ax), .. for Ax # 0. A function is secure from the
analysis only if the DL(AY; AX]Ax),,,, does not exceed a certain threshold. Notice that small

~
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DL(AY;aX]Ax) means small [x{Ax)| (see equation (24)). Being resistant to differential
analysis requires that a function have no significant autocorrelation with every input change
pattern.

Proposition 2 A function is affine if and only if its awtocorrelation function satisfies
[ (aX})} = 1. '

Proof: Consider f(X) in algebraic normal form. Let «(X)} and g(X) be the affine
part and the nonlinear part of f(X) respectively, then we have f(X) = ¢(X) & a(X) and
fXeaAX)s f(X)=g(XpaAX) B g(X)®c-2X, where ¢ € ZF and ¢ - AX denotes the
dot product of vector ¢ and AX.

If f(X) is affine, then f(X ® AX) @ f(X) = ¢ AX . This guarantees |7{AX) | =1,

Conversely, suppose |7(AX)| = 1 and f(X) is nonlinear, then the lowest nonlinear order,
denoted by m, in g(X) is greater than 1. We have g(x)} = 0 for all x with Hamming weight less
than m. There exists an Ax of Hamming weight m such that g(ax) = 1. It is easy to find an
% with wt(k) < m and satisfying wi(Xx @ Ax) < m. So we obtain

1, x=0
It follows that f(x @ AX) @ f(x)|x=0 # f(x & &%) ® f(X)|x=2pax- Then we find
r(ax) =27" 3 (- 1)/ £ 4q (32)

This contradicts our previous assumption that |7(AX)| = 1 and f(X) is nonlinear. So f(X)
must be affine, ) O

Proposition 2 points out that affine functions and only affine functions have maximum
autocorrelation with every input change pattern. Such functions have dynamic information
leakage DL(AY;aX]ax) = 1 for all Ax € Z§. As a result, affine functions are most
vulnerable to differential analysis. On the other hand, 2 function has no autocorrelation
with every input change pattern (i.e., 7m{Ax) = 0 for all Ax # 0 ) if and only if it is
bent [10]. Such a function has no dynamic information leakage by whatever given input change
pattern (i.e, DL{AY; AX]AX) = 0 for all Ax # 0 ). So bent functions are least vulnerable to
differential analysis.

The propagation criterion is closely related to the dynamic information leakage of Y by
some given input change pattemns. Function f(X) satisfies Propagation Criterion of degree k
(PC-k) if the output changes with a probability of 1/2 whenever m (0 < m < k) bits of input are
complemented. Using the notation of autocorrelation function, we may represent the PC-k by
7(Ax) = 0 for all Ax, 0 < wi(ax) < k, where wi(-) is an abbreviation of Hamming weight. By
equation (24), PC-k is further equivalent to DL({AY; AX[Ax)} = 0 for all Ax, 0 < wi{ax) £ k.

In the differential analysis of functions, we assume that computing the probability of the
output change by complementing one bit of input is as useful as computing the same probability
by complementing & (1 < k < n ) bits of input. Hence the dynamic information leakage of ¥
by every given input change pattern is equally undesirable. In the information theoretic point of
view, the nature of propagation criterion (including SAC) is to require zero dynamic information
leakage of ¥ by certain X change patterns (such as 0 < wi(ax) < k) regardless of the dynamic
information leakage of ¥ by other X change patterns. Consequently, functions may be overly
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restricted and turn out to be vulnerable to differential analysis. For example, when the input
dimension » is odd, the highest PC degree is n-1, and all PC-(n~1) fulfilling functions have
autocorrelation coefficient w(1) = &1, where 1 denotes the vector of which all the components
taking the value 1. These functions are vulnerable to differential analysis because knowledge
of input pattern 1 completely gives away the output change (i.e., DL{AY; AX|1l) = 1). This
input change pattern 1 happens to be a linear structure defined by Evertse [18] and Merer &
Staffelbach [10].

A function resistant to differential analysis is allowed to have a small amount of information
leakage between the output change and the 1-bit input change patterns, thus it may not satisfy
any degree of propagation criterion. In fact it is the maximum dynamic information leakage
DL{AY; AX]AX),,,, (for Ax # 0 ) that determines the vulnerability to differential analysis.
The propagation criterion in general does not care the maximum dynamic information leakage,
and therefore does not refiect the resistance to differential analysis. So a cryptographically strong
function does not necessarily satisfy the propagation criterion.

In many cryptographic applications balanced functions are required. Modified bent functions

are popular in these cases. Considering the resistance to differential analysis, we suggest the

- modification be done based on the idea of no significant information leakage between the change

of output and every input change pattern. Otherwise, suppose that 2 bent function is modified

for the purposes of 01 balance and PC fulfilling such that the highest PC degree is %, there

might exist a large value of DL(AY; AX|Ax) for certain Ax, wi(Ax) > k. This large dynamic
information leakage can make the function vulnerable to differential analysis.

Higher order strict avalanche criterion by Forré is related to information leakage of the
sub-functions of f(X). According to Lloyd[19], f(X) satisfies SAC of order k if and only if
every sub-function obtained by keeping k input variables constant fulfills SAC. A sub-function of
f(X) obtained by keeping & input variables constant can be represented by ¥' = f(Xy.x|xy).
Using the notation of entropy, we can easily prove the sub-function fulfills SAC if and only
H(AY'|AXy_x = Axp-x)} = 1 for all Axy ), wt(Axy-k) = 1. By Definition 1, above
expression is equivalent to DL(AY'; AX,_y|Ax,_y) = 0 for all Axy_y, wi(Axy_y) = 1.
Clearly, if f(X) satisfies SAC of order k, all the sub-functions obtained by keeping & input
variables constant have no information leakage between the changes of their outputs and every
1-bit input change pattern, and vice versa.

The higher order SAC requires all sub-functions satisfies SAC (or PC-1} in order to guarantee
that a function can not be roughly approximated by its sub-functions and no sub-function can be
roughly approximated by its further sub-functions. By doing this, however, higher order SAC
may overly restricted functions and make them weak to differential analysis. For example, it is
proved in [13, Th.10] that all functions satisfying SAC of order (n-2) or (n—3) must be quadratic.
Notice that all autocorrelation coefficients of quadratic functions take the value 0 or £1 [20, Th.5].
If the input dimension » is odd, the quadratic functions can not be bent. Consequently there is
a large information leakage DL(AY; AX|ax) for certain input change pattern. These functions
are vulnerable to differential analysis. As a matter of fact, a little information leakage between
the output change and the 1-bit input change patterns of a sub-function will not result in a good
and simpler approximation of the sub-function. Allowing a small information leakage between
the output change and 1-bit input change pattems could loosen the restriction on the original
function without reducing its cryptographic strength. Thus a cryptographically good function
may not strictly satisfy higher order SAC.
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5 Conclusion

Information leakage of a function measures, in terms of entropy, the predictability of
a function. The measurement is carried out both in static and dynamic ways. The static
and dynamic information leakage reflect the vulnerability of a cryptographic transformation to
statistical analysis. Each type of information leakage measures one aspect of the vulnerability.
Generally, a cryptographically strong function should have no significant information leakage
by both static and dynamic measurement. However, when minimizing all types of information
leakage, conflicts arise. At this time it is not clear, when optimizing, what the approriate cost
function should be. In most cases, a desirable function results from a trade-off between the
abilities to withstand static and dynamic analyses, '
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Abstract

This letter presents a simple yet effective method for transforming Boolean
functions that do not satisfy the strict avalanche criterion (SAC) into ones
that satisfy the criterion. Such a method has a wide range of applications
in designing cryptographically strong functions, including substitution boxes
(S-boxes) employed by common key block encryption algorithms,
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1 The Strict Avalanche Criterion

A (Boolean) function on V,, where V; denotes the vector space of n-tuples of elements
from GF(2), is said to satisfly the strict avalanche criterion (SAC) if complementing
a single bit in its input results in the output of the function being complemented half
the time over all the input vectors. The SAC is a very important requirement for
cryptographic functions. The formal definition for the SAC is due to Webster and
Tavares, and appeared first in 1985 [Web85, WT86]:

Definition 1 Let f be a function on V,,. f is said to satisfy the SAC if f(z)® f(z®a)
assumes the values zero and one an equal number of times, or simply, f(z)® f(z® a)
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is balanced, for every a € V, with W(a) = 1, where ¢ = (z,,...,z,) and W(a)
denotes the number of ones in (or the Hamming weight of) the vector a.

A closely related concept is propagation criterion [AT90, PLL*91, PGV91]:
Definition 2 Let f be a function on V,,. We say that f satisfies

1. the propagation criterion with respect to a non-zero vector a in V, if f(z) @
f(z ® @) is a balanced function.

2. the propagation criterion of degree k if it satisfies the propagation criterion with
respect to all a € V,, with 1 £ W(a) £ k.

As the SAC is equivalent to the propagation criterion of degree 1, the latter can
be viewed as a generalization of the former. In another direction, the SAC has been
generalized to higher order SAC. This work is represented by [For89]. In this letter
~ we shall not pursue further the developments in these two directions. Instead we shall
“focus our attention on how to transform functions which do not satisfy the SAC into

ones that satisfy the criterion.

2 Single Functions
'First we introduce the following basic theorem.

Theorem 1 Let f be a function on V;, and A be a nondegenerate mairiz of order n
whose entries are from GF(2). Suppose that f(2)® f(z @) is balanced for each row
v of A, wherei =1,...,n and z = (21,...,2,). Namely f satisfies the propagation
criterion with respect to all rows of A. Then ¢(z) = f(zA) satisfies the SAC.

Proof. Let §; be a vector in V,, whose entries, except the ith, are all zero. Note
that W(&) = 1 and §A = v;, ¢ = 1,...,n. Then we have ¥{z) @ ¥(z & &) =
f(zA)® f((z @ &)A) = f(u) @ f(u & v:), where u = zA. Since A is nondegenerate,
u runs through Vj, while z does. By assumption, f(u) @ f(u @ ;) runs through the
values zero and one an equal number of times while u runs through V.. Consequently
¥(z)®YP(z @ 6;) runs through the values zero and one an equal number of times while
z runs through V. That is, ¢(z) satisfies the SAC. a

Note that the algebraic degree, the nonlinearity and the balancedness of a func-
_tion is unchanged under a nondegenerate linear transformation of coordinates [MS90,
SZ793a). In addition the number of nonzero vectors with respect to which the function
satisfies the propagation criterion is also invariant under the transformation {SZZ93a).
In the case of S-boxes (tuples of functions), the profile of its difference distribution ta-
ble, which measures the strength against the differential cryptanalysis [BS91, BS93],
also remains invariant under such a transformation [SZZ93c]. Thus Theorem 1 pro-
vides us with a very useful tool to improve the strict avalanche characteristics of
cryptographic functions. In the following we consider two applications of the theo-
rem.
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Application 1 Qur first application shows that a SAC-fulfilling function on a higher
dimensional space can be easily obtained from a SAC-fulfilling function on a lower
dimensional space.

Let ¢(y1,-..,¥s) be a function on V, that satisfies the SAC. Adding ¢ dummy-
coordinates zi,...,; into g, we obtain a function f on V4, namely,

f(yli'--sy-hml,"'!mf) =g(y1$"'1y8)

The t newly added coordinates have no influence on the output of f. Hence f does
not satisfy the SAC.

Let A be a nondegenerate matrix of order s +t. Assume that each row 7; of A can
be written as v; = (Bi, o), where W(3;) = 1,8, € V,and o; € V. Let 2 = (z1,...,2¢),
Y = (..., us) and z = (y,7). Then we have f(2) @ f(z ® %) = 9(y) ® 9(y ® Bo).
This shows that f(z) @ f(z @ ;) is balanced for v;, ¢ = 1,...,s8 + ¢{. By Theorem 1,
¥(z) = f(zA) satisfies the SAC.

An example of the matrices that satisfy the requirements is as follows:

— Is Oaxt
S g

where I denotes the identity matrix, 0 denotes the zero matrix, and @ is a matrix
that contains precisely an one in each of its rows.

# and f have the same nonlinearity, algebraic degree, and balancedness as f(z)
does. The two functions also have the same number of nonzero vectors with respect
which they satisfy the propagation criterion. The net gain of 3 over f is the SAC.
However, it should be pointed out that for this particular example, the resulting
function 2 does not satisfy the propagation criterion with respect to vectors whose
entries are zeros except in the first and the (s + j)th, where 1 £ j £ {. This property
might be undesirable in certain applications. We can get around the problem by
selecting a nondegenerate matrix A that introduces more inter-dependencies among
the coordinates. Here is such a matrix:

A — I.! Osxf Ia .Bsxg
tha It Ot)(s It

Ia Baxt
- 2
[ Qixs QixsBsxt @ It ] | (2)

where B is an arbitrary matrix whose entries are taken from GF(2).

Application 2 Let go and ¢, be functions on V;. Then f(y1,z1,...,2:) = (1 @
¥1)g0(Z1, - - - Tt} B v191(21, - . -, 4) is a function on V;i1. The truth table of f can be
obtained by concatenating the truth tables of go and g;. For this reason, we say that
f is the concatenation of go and ¢;. Similarly, we can define the concatenation of 2°
functions on V;. The result is a function on V;4,. To simplify the representation of
the concatenation of 2° functions, we introduce the following notation.

For each vector § = (41,...,15) € V;, we define a function Ds on V, by

Ds(y) = (31 @ 41)... (ys D 2y)
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where y = (y1,..-,9,) and 7 denotes the binary complement of i, namely, : = 1 @ i.
For instance, when s = 2 we have Doo(y1,%2) = (y1 © 1){(y2 © 1), and when s = 3 we
have D101(y1,y2,y3) = y;(yg & 1ya. Note that Ds(y) = 1 if and only if y = é.

f(y,2) = D [Ds(y)g6(<)] (3)

sev,

where z = (zy,...,7:). Note that each g5 is a function on V; and is indexed by a
vector in V,. Of particular interest is the concatenation of linear functions on V;. In
Theorems 4 and 5 of [SZZ93b], the following result is proved:

Lemma 1l Whent 2 s and all g5, § € V,, are distinct nonzero linear functions on
V;, the function f constructed by (3) is highly nonlinear and balanced. In addition, f
satisfies the propagation criterion with respect to all v = (8, @), where 3 is a nonzero
vector in V, and o is an arbitrary vector in V;. '

Let A be a nondegenerate matrix of order s + f. Suppose that the ith row ; of
A can be written as v; = (8, ;) with B; # 0, where 8; € V; and o; € V;. From
Lemma 1 we know that f satisfies the propagation criterion with respect to all rows
of A. By Theorem 1, 1(z) = f(zA) satisfies the SAC. Note that the matrix A defined
by (1) or (2) satlsﬁes the requirements. =

These discussions also hold for the more general case where f is defined by

= D Dsly ga(fb’ J@r(y)

sev,

where r is an arbitrary function on V..

3 A Set of Functions

In computer security practice, such as the design of S-boxes, we often consider a set of
functions. It is desirable that all component functions in a set simultaneously satisfy
the SAC. From Theorem 1 we can see that given a set of functions on Vo, {f1,...,fm},
if A is a nondegenerate matrix of order n such that fi(z) @ fi(z @ ~;) is balanced for
every function f; and every row 4; in A, then ¢:(z) = fi(zA), ..., gm(z) = fm(zA) all
satisfy the SAC. The following theorem gives a sufficient condition for the existence
of such a nondegenerate matrix. '

Theorem 2 Let fi, ..., fm be functions on V,. Denote by B the set of nonzero
vectors v in V, such that f;(z) @ fi(z @) is not balanced for some 1 < j S m, and
by |B| the number of vectors in B. If |B| < 2™~1, then there ezists a nondegenerate
matriz A of order n with entries from GF(2) such that each ;(z) = f;(zA) satisfies
the SAC.
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Proof. We show how to construct a nondegenerate matrix A of order n, under the
condition that |B| < 2*7'. Denote by Sj,..... the set of vectors consisting of all the
linear combinations of vectors oy,...,a;. _

The first row of A, 71, is selected from V;, excluding those in B and the zero vector,
i.e., from the vector set V,, — B — Sy. There are 2" — |B| — 2° different choices for ;.
The second row of A, v, is selected from the vector set V, — B—S.,,. This guarantees
that 4, is linearly independent of v;. We have 2" — |B] — 2! different choices for 7,.

In general, once the first £ — 1 linearly independent rows 74, ..., yx-1 of A are
selected, the kth row i, k < n, will be selected from the vectorset V,— B—-S.,, .. ..
This process ensures that 71, ..., 7 are all linearly independent.

The number of choices for the last row v, is 2" — |B| — 2"t = 2*~1 — |B] > 0.
Therefore, we can always find a nondegenerate matrix A such that fi(z) & fi(z @ 7;)
is balanced for every 1 £i < m and 1 £ j £ n. By Theorem 1, ¢1(z) = fi(zA4), ...,
Ym(z) = fu(zA) all satisfy the SAC. a

As is discussed in Section 2, the transformation technique does not affect the
nonlinearity, the algebraic degree and the balancedness of the component functions
of an S-box. The profile of the difference distribution table of the S-box, and the
number of nonzero vectors with respect to which the component functions satisfy the
propagation criterion are not altered either. This technique has been successfully
applied in [SZZ93c] to design S-boxes that possess many desirable cryptographic
properties, which include the high nonlinearity, the SAC, the balancedness and the
robustness against differential cryptanalysis. As is shown below, the technique can
also be applied to other approaches to the construction of S-boxes.

Application 3 S-boxes based on permutation polynomials are studied in [Pie91,
NK92, Nyb92, Nyb93, BD93). In general, these permutations do not satisfy the SAC.
Employing the transformation technique discussed above, the strict avalanche charac-
teristics of these permutations can be improved. In particular, with the permutations
constructed by the “cubing” method [Pie91, NK92, Nyb93}, each component function
f; satisfies the propagation criterion with respect to all but one nonzero vectors in
V.., where n 2 3 is odd. Note that |B] £ n. A component function fails to satisfy the
SAC if the Hamming weight of the nonzero vector with respect to which the propa-
gation criterion is not satisfied is one. If this is the case, by Theorem 2 we can use a

nondegenerate matrix to transform the component functions of such a permutation
so that they all satisfy the SAC.

4 A Final Remark

In [SZZ93a), we have constructed highly nonlinear balanced functions on Viryy that
satisfy the propagation criterion of degree 2k, and highly nonlinear balanced func-
tions on Vi that satisfy the propagation criterion of degree k. A transformation
technique similar to that presented in this letter has played an important role in the
constructions. '
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