120

Dense Probabilistic Encryption

Josh Benaloh
Clarkson University

Abstract

This paper describes a method of dense probabilistic encryption. Previous
probabilistic encryption methods require large numbers of random bits and
produce large amounts of ciphertext for the encryption of each bit of plaintext.
This paper develops a method of probabilistic encryption in which the ratio
of ciphertext text size to plaintext size and the proportion of random bits to
plaintext can both be made arbitrarily close to one. The methods described
here have applications which are not in any apparent way possible with previous
methods. These applications include simple and efficient protocols for non-
interactive verifiable secret sharing and a method for conducting practical and
verifiable secret-ballot elections.

1 Introduction

In 1984, Goldwasser and Micali ([GoMi84]} introduced the notion of probabilistic
encryption. A probabilistic encryption method allows one to encrypt a fixed value in
many different ways. Thus, even when given the encryption of a value and details
of the encryption mechanism (including any encryption key), it is not necessarily
possible for an adversary to determine whether or not a given ciphertext represents
the encryption of a particular value.

Goldwasser and Micali develop a bit encryption function based on the number
theoretic problem of quadratic residuosity. Their method has many useful properties,
but there is one major drawback: for a given security parameter N, the probabilis-
tic encryption of each bit is N bits long, requires N random bits, and uses several
operations on N bit integers.

This work describes a dense method of probabilistic encryption which, unlike the
method of Goldwasser and Micali, is capable of encrypting more than one bit at
a time. For any given k and security parameter N, this new method allows the
encryption of k bits of information into an N + k bit ciphertext using N + k random
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bits and operations on N + k bit integers. Thus, for any desired security parameter
N, the ratio of plaintext size to ciphertext size {(as well as to random bits required or
to the size of the integers computed upon) can be made arbitrarily close to one.

There are also some applications where one bit at a time probabilistic encryption
is unsuitable regardless of efficiency. This paper describes two such applications -
non-interactive verifiable secret sharing and a method for obtaining verifiable secret-
ballot elections — in which the dense probabilistic encryption method described here
can be used while there is no apparent way of developing similar solutions with bitwise
probabilistic encryption.

2 The Encryption Method

This section will show how to generate “one-to-many” functions (or randomized func-
tions) E, for any odd integer r with the following basic properties.

¢ Given 2 message M € Z, = {0,1,2,...,7 — 1}, it is computationally easy to for
any participant to form an encryption z € E,.(M).

o The decryption of any z € E,.(M) is unique - that is, if M}, My € Z, with
M, # M, then E.(M;) N E.(M;) = @; and this unique decryption can be
computed by the creator of E,.

¢ Under a suitable cryptographic assumption it is “infeasible” to compute M
(or even gain so much as an inverse polynomial advantage at computing any
predicate on M) given simply the details of the randomized function E, and an
encryption z € E.(M).

In addition to these properties, several other useful properties will be achieved.

e Civen a message M € Z, any participant can generate a z € E.(M) together
with a certificate © which can be used to prove to any other participant(s) that
z € E.(M).

¢ Given an encryption z € E.(M), it is possible for the creator of E, to pro-
duce a certificate « which is uniformly selected from the set of all possible user
certificates and can, likewise, be used to prove that z € E.(M).

o There are easily (and universally) computable functions “®” and “@" which
have the property that whenever z; € E, (M) and 2y € E,(M;) it is the case
that (2, ® 22) € E.((M; + M,) mod r) and (2, @ 22} € E,((M, — M,) mod 7).
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2.1 Encryption

A randomized encryption function E, satisfying the above properties can be developed
as follows.

1. Select two “large” primes p and ¢ such that r divides (p — 1), r and (p — 1)/r
are relatively prime, and r and (¢ — 1) are relatively prime. (Such primes are
easy to generate by searching among appropriate arithmetic sequences.) Form
n = pq.

2. Select y € Z%, = {z € Z, : gcd(z,n) = 1} such that yP~ =D/ mod n # 1. -

3. Reveal n and y. The randomized encryption function E' is defined by the set
E.(M) = {yMu" modn:u € Z;}.

It is now a trivial matter for a user given a message M € Z, and randomized
function F, to (by randomly and uniformly selecting v € Z}) generate a uniform
element z = (y™v" mod n) € E.(M). Furthermore, this u serves as a certificate to
prove that z € E.(M).

To see that decryptions are unique, observe that y*u] mod n = y™?u} mod n
implies that ¥ ~*2 mod n = (upui')" mod n. By the construction of y, this, in
turn, implies that M, mod » = M; mod r. It then follows immediately that the sets
E.(0), F.(1), E.(2),...,E.(r — 1) form a partition of Z}, and this gives the unique
decryption property. Also, the two functions given by z; ® z2 = (z; - z2) mod n and
21 ® 73 = (21 - z77!) mod n can easily be seen to satisfy the homomorphic properties
described above.

In contrast, the original Goldwasser-Micali probabilistic encryption is essentially
the special case of this method in which » = 2. However, since it is impossible for
r = 2 to be relatively prime to ¢ — 1 when ¢ is a large prime, the Goldwasser-Micali
system must restrict consideration to those elements of Z; with a Jacobi symbol of
+1. There is no need for such a restriction in the dense system described here.

2.2 Decryption

Security of decryption is based on the cryptographic assumption that deciding higher
residuosity is computationally difficult: given z, r, and n of unknown factorization,
there is no known polynomial time algorithm to determine whether or not there exists
an ¢ such that z = " mod n.

In the case where n = pq is of the form described above and the prime factors p
and ¢ are known, the process of deciding higher residuosity is efficiently computable
by the following simple rule:

z € E.(0) if and only if 2P~ a-U/r mod n = 1.
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Thus, if r is small, one can simply decrypt a message z by determining (exhaustively)
the smallest non-negative integer m such that (y™™z mod n) € E,(0).

This process can be further accelerated by pre-processing. For each M € Z,, a
canonical value Ty can be computed as

Ty = yM P~ Me-1/r mod n,

Tt can be shown that for every z € E,(M), it is true that 2?14~/  mod n-= Ty.
Thus, the r (distinct) values Ty, T4, ..., Tr—; can be pre-computed, and any encrypted
value z can be decrypted by a table look-up on the value z®~1e~1/" mod n.

If r is of moderate size, a combination of the two previous methods can be used
to bring the storage, pre-computation time, and decryption time all to O(+/7). The
idea (sometimes known as “big-step little-step” is to pre-compute T for M = kT
as k ranges from 1 to /7. These values serve as milestones which are only about /7
steps apart. Given a z of unknown decryption, one can find the smallest non-negative
integer m for which the T} corresponding to ¥y~™z has been pre-computed. This m
is bounded above by /T and can be regarded as an offset from the pre-computed
decryption value Tys. The decryption of such a z is therefore the value M + m.

Finally, even if r is large, decryption is efficient provided that r contains no large
prime factors. An extreme case in which decryption is very efficient is when r is of the
form r = 3* for some positive integer k. In this case, the decryption of a value z can
be computed in ternary notation. First, the low order “trit” ¢; of the decryption of z
is the unique value t € {0,1,2} such that (y~%z)®~Da-1/3 mod n = 1. Once t; has
been computed, the next-to-last trit tx_; € {0, 1,2} is computed as the unique value
such that (y~#~3%-12)P~D-1/3 mod n = 1. Next, ty—2 € {0,1,2} is computed as
the unique value such that (y=—3t%-1=3te—22)(P~Dle-1/3 mod n = 1. This process
is continued until the ternary representation (f1,%s,...,t:) of the decryption of z is
computed.

3 Some Applications

Besides the advantages of greater density in probabilistic encryption, there are some
tasks which can be performed with the methods described here which cannot, in any
apparent way, be done by any other means whatsoever.

3.1 Verifiable Secret Sharing

The notion of secret sharing was introduced by Shamir in [Sham79}. Shamir defines
threshold schemes to be methods of dividing a secret value s into shares such that
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(1) Any subset of shares which exceeds a predetermined size is sufficient to recon-
struct the secret.

(2) Any smaller subset of shares gives no information (in an information theoretic
sense) about the secret.

Shamir described a method of secret sharing based on polynomial interpolation
and evaluation.

In 1985, Chor, Goldwasser, Micali, and Awerbach ([CGMAB85]) described the prob-
lem of verifiable secret sharirig. The problem here is to develop a protocol for secret
sharing such that when it is complete each shareholder is confident that its share
is meaningful. (Note that a dishonest secret sharer could give some shareholders
worthless information rather than actual shares.)

Chor, Goldwasser, Micali, and Awerbach give a protocol which achieves verifiable
secret sharing. However, their method is exponential in the number of shareholders.

The application of the encryption method described in this paper to the problem
of verifiable secret sharing was first given in [Bena86] in which interactive proof tech-
niques are also required. Feldman ({Feld87}), Ben-Or, Goldwasser, and Wigderson
([BGW88]), Rabin ([Rabi88]), and Rabin and Ben-Or ([RaBO89}) later expanded
upon this approach.

The basic technique used in all of these methods is to perform computations on
shares of secrets without first combining the shares to form the secrets. This is easily
possible if the shares are encrypted using the dense probabilistic encryption method
given. Computations on shares can be performed using the homomorphism properties
described in the previous section.

One of the simplest of these verifiable secret sharing methods is formed by com-
bining the encryption method described herein with Shamir’s polynomial based secret
sharing ([Sham79]) and the ideas of Feldman's non-interactive verifiable secret sharing
([Feld87]).

To distribute shares of a secret value s € Z, (r must be prime) to m participants
such that any k of the m can determine the secret value, a randomized encryption
function E, is formed by the “dealer” of the secret. The dealer then randomly selects
values aj,as,...,a5_-1 € Z, and forms the polynomial

P(z) = g1z ap 02" % + -+ agz® + a3z + qg

where the constant coefficient ag is given by ay = 5. The dealer then forms m shares
s; = P({)modn for 1 < i < m and privately distributes each share s; to the i}
shareholder. Next, the dealer computes encryptions 2, € E.(a;) of the coefficients a;
for 0 < 7 < k and publicly reveals these encryptions. It is now possible for any and
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all participants to {by using the homomorphism properties) compute

k-1
3
w; = (H z; ) mod n.
3=0

Since z; € Er(a;), the additive homomorphism property of the cryptosystem
implies that (z;)* € E,(a;a) for any scalar a. In particular, zf € E,(a;#). Since the
share s; = P(i)mod n = (Hf__’_& a,-z'j) mod n, the additive homomorphism property
also implies that each w; € E,(s;). Thus, each w; is a publicly computable encryption
of the share s;. The dealer can then privately distribute to the i*® shareholder a
certificate u; to prove that w; € FE.(s;). It is thereby impossible for the dealer to
convince a shareholder that its share is legitimate when it is not. The secret value
s can now be reconstructed at any subsequent time by any k of the shareholders.
They need only pool their shares to interpolate the polynomial P(x). The constant
coefficient P(0) is, by definition, the secret. This method has the added advantage
that since shareholders have certificates of their shares, they cannot convincingly lie
to each other about the values of their shares. Thus, dishonest shareholders cannot
disrupt the reconstruction of the secret.

One final observation is that the dealer need not even be the creator of the ran-
domized encryption function FE,. Careful examination of the process shows that the
share certificates u;, can be computed directly and simply from the random values
the dealer chose to encrypt the coefficients. Hence, the dealer need not even be able
to decrypt E, to engage in this protocol.

It should be noted here that it is simply not possible to use ordinary Goldwasser-
Micali probabilistic bit encryption for this application. With Shamir’s method of
secret sharing, the space from which secret and share values are chosen must be of a
size which is prime and greater than the number of shareholders. Since probabilistic
encryption methods will be used to encrypt shares, the Goldwasser-Micali bit encryp-
tion method is inadequate. (Note that segmenting share values bit by bit does not
work since the Shamir scheme can only be applied when the number of shareholders
is smaller than the secret/share space — which in this case is 2.)

3.2 Verifiable Secret-Ballot Elections

The problem of verifiable secret-ballot elections is defined in [Bena87], and a solution
is presented there which depends strongly on the dense probabilistic encryption de-
scribed here. The general problem is quite complex and its solution requires many
techniques which are not addressed here. Instead of trying to present here a complete
solution to the verifiable secret-ballot election problem, an overview will be given
which demonstrates the use of dense probabilistic encryption.
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The oversimplified scheme presented here has many omissions and should not be
read as a claim of a secure method of holding verifiable secret-ballot elections. The
reader is referred to [Bena87] for a complete treatment.

The scheme described in this section is centralized. A central government is
assumed to exist. The government prepares a dense probabilistic encryption function
E, as described herein with = greater than the number of eligible voters and publicly
reveals F,.

Each voter selects either a random v; € E,(0) to denote a “no vote” or a random
v; € E,.(1) to denotes a “yes vote”. Each voter then publicly releases its v;. By the
homomorphism properties, W = (J]v;) mod n is an encryption of the sum of the
unencrypted values. In this case, therefore, W is an encryption of the total number
of yes votes cast by voters. Thus, the central government need only decrypt this one
value W to determine the tally of the election; and by providing a certificate u of
this decryption, the government can prove to all observers that the claimed tally is
accurate. :

There are, of course, many problems with this scheme. But this is the fundamental
idea used in [CoFi85], [BeYus86], [Cohe86], [Bena87], and {BeTu94] to enable a variety
of practical verifiable election schemes.

4 Conclusions

This paper has described a method of dense probabilistic encryption which has many
similarities to, but many advantages over, the original method of probabilistic en-
cryption introduced by Goldwasser and Micali. These advantages also apply relative
to all previous methods of probabilistic encryption.

Many variations of this method are possible depending on the users’ willingness to
depend upon stronger assumptions in exchange for more efficient decryption. Applica-
tions of this method have also been given in which traditional probabilistic encryption
methods are not just less efficient, but are instead unusable.
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Simple and Effective Key Scheduling for Symmetric Ciphers
(Extended Abstract)

~ Carlisle M, Adams
Bell-Northern Research

1. INTRODUCTION

Recently, a design procedure for private-key cryptosystems constructed as substitution-
permutation networks (SPNs) was proposed [AT]. This procedure (known as the "CAST" design
procedure) incorporates substitution-boxes (s-boxes) with fewer input bits than output bits and
leads to a family of cryptosystems which are conceptually simple, are easily implemented, are very
efficient in terms of encryption/decryption speed, and appear to have high security.

The focus of this paper is the design of a key scheduling algorithm for DES-like cryptosystems
in general and for CAST cryptosystems in particular. Key scheduling is an area which has not
seen as much activity as other aspects of cipher design, but which has taken on somewhat more
significance in light of Biham's recent work on related-key cryptanalysis [B]. The key scheduling
algorithm proposed in this paper is immune to related-key cryptanalysis and, furthermore, has a
provable absence of weak and semi-weak keys [KRS, C, MSi] ~ to the authors’ knowledge, this is
the first time such a proof has been available for any cipher in the open literature.

The paper is organized as follows: Section 2 provides a brief overview of the design procedure
given in {AT]; Section 3 gives a general discussion of key scheduling; and Section 4 gives proofs
that the CAST key schedule will possess various cryptographic properties. Concluding comments
are given in Section 3.

2. OVERVIEW OF THE CAST DESIGN PROCEDURE

The CAST design procedure for substitution-permutation network cryptosystems which
incorporate mxn s-boxes, m < n, is as follows. Let n=r*m (where r is an integer greater than 1),
let 2n be the blocksize of the cryptosystem, and let s be a positive integer £ r. The general
framework of the algorithm is similar to the Data Encryption Standard: the plaintext is initially
broken into halves of length n; at each round, one half is modified, is added modulo 2 to the other
half, and the two halves are interchanged; after R rounds, the two halves are concatenated to form
the ciphertext. However, the modification of a message half at each round is implemented quite
differently from DES: here r+s mxn substitution boxes from separate compatibility classes (see
[A, AT]) are used, where each s-box is constructed according to the procedure given in [AT]

The (keyed) message half modification at each round is quite straightforward and is
accomplished as follows. The subkey for a round is broken into s m-bit pieces, each piece is input
to a separate mxn s-box, and the n-bit outputs are summed modulo 2 to form a mask for the

message half. The masked n-bit message half is then broken into r m-bit pieces, each piece is input
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to a separate mxn s-box and the n-bit outputs are summed modulo 2 to form the n-bit modified
message half.

2.1. AN EXAMPLE SPN CRYPTOSYSTEM

We have constructed an example substitution-permutation network based on the CAST design
procedure to illustrate how it may be used. The network uses parameters m=8, n=32, r=4, and
s=2; that is, it has a blocksize and keysize of 64 bits and uses six 8x32 s-boxes §;...5¢ (four for
the right half R; and two for the subkey K; at each round i). It uses 16 bits of key in each round
and uses 8 rounds. At round i, the message half modification block ftakes as input the four bytes
of R; and the subkey K;:

fiR) = ZSj(R','J) forj=1..4, where R'1 = R; @ 55(K; 1) @ Ss(K; ).

(Note that X; ; denotes the 1 byte of X;). Let KEY = kjkokskskskek7kg, where k; is the i*h byte
of the input key. The key schedule used is as follows: Kj=(kj;,k2), K2=(k3 kq), K3=(ks,ks),
Ky=(k7,kg), Ks=(kq' k3'), Ke=(k2 k1), K7=(kg' k7'), Kg=(kg'ks'), where KEY is transformed to
KEY' = kj'ko'ks'kqg'ksksk7'kg between round 4 and round 5. The transformation is defined by:
(kpka'ksky) = (kikokske) @ SS5[ks] @ S6[{k7] ; (kskekykg') = (ksksk7kg) @ S5[k2'] & S6{kq'].
The bytes of KEY' are then used to construct the remaining four subkeys as shown above. It is
not difficult to construct a similar schedule for a 12- or 16-round system.

3. COMMENTS ON THE KEY SCHEDULE

Keying is a crucial aspect of cryptosystem design. A key schedule should provide some
guarantee of key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion in order to
avoid certain key clustering attacks. Our approach to key scheduling is described above. Note that
the s s-boxes used for keying (the "key schedule s-boxes") should be from separate compatibility
classes and furthermore should be in separate classes from the other r s-boxes used in message half
modification (so that there is no guaranteed cancellation of s-box outputs). Note as well that the
s*m key bits selected in round i should be different from the s*m key bits selected in round i+1
(this is due to the work of Grossman and Tuckerman [GT], who showed that DES-like
cryptosystems without a rotating key can be broken). Note finally that if any key bit is used in
round R (the last round) for the first time then the network fails the key/ciphertext completeness
test, since complementing that bit can only affect a single message half. All key bits must therefore
be used by round R-1; in fact, we recommend that they be used by round R/2 and reused, after the
key transformation given above, in the lower half of the network (this ensures good key avalanche
for both encryption and decryption, as well as other properties discussed in Section §).

The critical difference between the key schedule proposed in this paper and other schedules
described in the open literature is the dependence upon substitution boxes for the creation of the
subkeys. Other key schedules (the one in DES, for example) typically use a complex bit-selection
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algorithm to select the bits of the subkey for round i from the input key. As is clear from the work
by Biham [B], any weaknesses in this bit selection algorithm can lead to simple cryptanalysis of
the cipher, regardless of the number of rounds. The schedule proposed here instead uses a very
simple bit-selection algorithm and a set of key schedule s-boxes to create the subkey for each
round. These s-boxes must therefore be carefully designed to ensure cryptographically good key
schedules (see [A), [AT] for descriptions of s-box design in CAST ciphers).

4. CRYPTOGRAPHIC PROPERTIES OF THE KEY SCHEDULE

In a block cipher, an inverse key H for a given encryption key X is defined to be a key such that
ENCy(p) = ENCg!(p) = DECx{p) for any plaintext vector p. Furthermore, a fixed point of a key
K is a plaintext vector x such that ENCg{x) = x.

From work done on cycling properties and key scheduling in DES [KRS, C, MSi], the following
definitions have been introduced. A key is weak if it is its own inverse (such keys generate a
palindromic set of subkeys and have 232 fixed points in DES). A key is semi-weak if it is not
weak but its inverse is easily found ~ there are two subclasses: a key is semi-weak, anti-
palindromic if its complement is its inverse (such keys generate an anti-palindromic set of subkeys
and have 232 fixed points in DES); a key is semi-weak, non-anti-palindromic if its inverse is also
semi-weak, non-anti-palindromic (such keys generate a set of subkeys with the property that K; @
Kr+j.i= V, where R is the number of rounds and V= 000...0111...1 or 111...1000...0 in DES).
DES has 4 weak keys, 4 semi-weak anti-palindromic keys, and 8 semi-weak non-anti-palindromic
keys.

Theorem: Ciphers using the key schedule proposed above can be shown to have no weak
keys.

Proof: There are two steps to this proof. In the first (general) step, we prove that for the
transformation given in the key schedule of Section 2, weak keys (i.e., palindromic sets of
subkeys) can arise if and only if S5{ks] @ S6{k7] = P(S5[k2'] @ S6{k4]), where P(-) is the byte
permutation (b;bob3bg) — (b2bibsbs). The second step, which is specific to each implementation
of the CAST design, is to examine the specific s-boxes chosen in the implementation to verify that

the equality does not hold (note that s-boxes satisfying this condition do exist). Details of this
proof will be given in the full paper. ¢

In fact, a much stronger result can be stated, as follows.
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Theorem: Ciphers using the key schedule proposed in this paper can be shown to have no
inverse key He (0,1}64 for any key Ke {0,1}64 (therefore, such ciphers have no semi-weak
keys).

Proof: There are two steps to this proof. Let S5[ky'] @ S6{k4'] be equal to the 4-byte vector
(ajazazaq) and let S5{ks] @ S6[k7] be equal to the 4-byte vector (b1b2b3by). In the first (general)
step, we prove that for the transformation given in the key schedule of Section 2, inverse keys
exist if and only if aj=a3, az=aq, by=bz, and b3=b4 all simultaneously hold. The second step,
which is specific to each implementation of the CAST design, is to examine the specific s-boxes
chosen in the implementation to verify that the equalities do not hold simultaneously (note that s-
boxes satisfying this condition do exist). Details of this proof will be given in the full paper. ¢

Open Question: Ciphers using the CAST key schedule have no fixed points for any key.
Discussion: From the above two theorems, these ciphers avoid both palindromic and anti-
palindromic sets of subkeys. They therefore are guaranteed to avoid the fixed points associated
with weak and semi-weak keys. It appears to be unknown in the open literature whether the
existance of such keys is a necessary condition for fixed points in DES-like cryptosystems. Even
if it is not a necessary condition, however, it is not clear that any other type of subkey set would
produce the large number (232) of fixed points that result from palindromic and anti-palindromic
subkey sets.

The above properties of the key schedule are due to the fact that s-boxes are employed in the
schedule itself (i.e., in the generation of the subkeys), rather than simply in the use of the subkeys.
To the authors' knowledge, this is a novel proposal in key scheduling which appears to have some
appealing benefits.

Theorem: CAST-designed ciphers are immune to related-key cryptanalysis.

Proof: There are no related keys in the key schedule described in this paper (i.e., the derivation
algorithm of the subkeys from the previous subkeys is not the same in all rounds because of the
transformation step), and so ciphers using this key schedule are not vulnerable to the "chosen-key-
chosen-plaintext", "chosen-key-known-plaintext”, or "chosen-plaintext-unknown-related-keys"
attacks [B). Furthermore, the CAST procedure has no known complementation properties (unlike
DES, for example) and so appears not to be vulnerable to reduced key searches based on this type
of weakness. ¢
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5. CONCLUSIONS 7

The CAST design procedure has a theoretical framework (because of the use of bent vectors)
and is both feasible (since bent vectors of the necessary size can be generated easily; see [N, P,
AT2], for example) and simple (since all phases of the design are defensible and readily
understandable). Furthermore, it produces ciphers which possess a number of important
cryptographic properties, have good real-time performance, and can be implemented easily in both
software and hardware.

This paper has focused on the design of a simple and effective key scheduling algorithm for
CAST and other symmetric block ciphers. The proposed schedule appears to meet the needs of
cryptographic security (absence of rotating subkeys, related subkeys, weak keys and semi-weak
keys) while maintaining conceptual simplicity and ease of implementation. It may therefore serve
as a good starting point for further research in this area.
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Abstract — In this paper we examine the key clustering characteristics of a class of block
cryptosystems referred to as substitution-permutation networks or SPNs. Specifically, we
investigate the relationship between the property of key avalanche and the success of a key
clustering attack. Further, we develop an analytical model of the key avalanche property
and use this to estimate a lower bound on the complexity of a key clustering attack as a
function of the number of rounds of substitutions.

I. introduction

Substitution-permutation networks (SPNs) evolved from the work of Shannon [1] and Feistel [2]
and form the foundation for many modern private key block cryptosystems such as DES [3],
FEAL [4], and LOKI [5]. Such cryptosystems belong to the class of product ciphers which obtain
their cryptographic strength by iterating a cryptographic operation several times. The basic SPN
consists of a number of rounds of nonlinear subsitutions connected by bit position permutations.
The substitutions are performed by dividing the block of bits into small sub-blocks and using a
mapping stored as a table lookup and referred to as an S-box. It has been shown that this basic
SPN structure can be used to construct ciphers which possess good cryptographic properties such
as completeness [6] and resistance to differential and linear cryptanalysis [7]{8].

We shall consider a general N-bit SPN as consisting of R rounds of n x n S-boxes. The
plaintext and ciphertext are N-bit vectors denotedas P = [P} P; ... Py} and C = [C} C; ... Cy],
respectively. An S-box in the network is defined as an n-bit bijective mapping S : X = Y
where X = [X; X3 ... X,;] and Y = [¥; Y2 ... Y;]. We shall assume that an S-box is keyed
by XORing n bits of key with the S-box input vector, X, before the substitution operation is
performed. Hence, the network is keyed from a 7-bit key K = [K; K3 ... K;] by XORing
N bits of the key with the network bits before each round of substitutions. The method for
determining where each key bit is applied in the network is referred to as the key scheduling
algorithm. Decryption is performed by running the data “backwards” through the network (ie.,
applying the key scheduling algorithm in reverse and using the inverse S-boxes). A simple
example of an SPN cryptosystem with N = 16, n = 4, and R = 4 is illustrated in Figure 1.
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Figure 1. Simple SPN with N = 16, n = 4, and R = 4

I1. Key Clustering Attacks

-A block cryptosystem is considered weak if keys which are close to each other in Hamming
distance result in a number of corresponding ciphertexts which are also close in distance.
For example, consider two keys, K' and K", for which wt(AK = K' @ K") is small where
wt(-) represents the Hamming weight of the specified argument, @ is the bit-wise XOR op-
erator, and A is used to indicate the XOR difference of the specfied vector. The encryp-
tion of [ plaintexts, Py, P, ..., P;, under the two different keys results in [ ciphertext pairs,
(C}, CY), (G5, CY), ..., (C}, C}). If there are a number of ciphertexts that are close in distance
due to the proximity of the two keys — for example, if E{wi(AC = C' @ C")} is small where
E{-} is the expectation operator — then we refer to the cryptosystem as having key clustering.

Key clustering can be exploited by a cryptanalyst to improve upon an exhaustive key search.
Such an attack requires an appropriate number of known plaintexts to be able to determine
whether a key is close to the correct key. The cryptanalyst proceeds by randomly selecting and
testing keys until a key is found that is in the neighborhood of the correct key. Once such a key is
found, the cryptanalyst can test all keys within a suitable distance of this key until the correct key
is established. As an example, consider a cryptosystem with a key of 64-bits and which has the
property that keys within distance 5 of the actual key (about 223 keys) result in ciphertexts that
are (on average) close enough to the actual ciphertexts to be distinguishable using only about
1000 known plaintext-ciphertext pairs. By randomly executing about 26¢/223 = 24! trials of
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1000 encryptions we expect to be able to discover a key in the neighorhood (i.e., within distance
5) of the actual key. Testing all keys in the neighborhood of this experimental key (about 223
encryptions) will reveal the correct key. As a result, the complexity of the key clustering attack
is approximately (1000)2%! + 223 ~ 251 which is a significant improvement on the complexity
of about 254 required for an exhaustive key search.

IT1. Key Avalanche Property

The relationship between the key avalanche property of a cryptosystem and key clustering attacks
was noted in [9]. In this section we develop a model for the key avalanche property of an SPN
as a function of the number of rounds of substitutions.

(a) Definitions
Consider the following definition of key avalanche.

Definition 1: A cryptosystem is said to satisfy the key avalanche criterion if each ciphertext bit
changes with a probability of 1/2 when a single key bit is changed.

This definition is analagous to the definition of the strict avalanche criterion (SAC) for a
cryptosystem [10] which refers to the probability of a ciphertext bit change given a one bit
plaintext change. The key avalanche criterion, of course, refers to key rather than plaintext
changes. As well, we can extend Definition 1 to consider the effect of changes involving more
than one key bit.

Definition 2: A cryptosystem is said to satisfy the extended key avalanche criterion order & if
each ciphertext bit changes with a probability of 1/2 when a set of « key bits are changed.

Let the key avalanche probability, py,, represent the probability that a particular ciphertext bit
changes given a particular set of « key bit changes. Ideally, we desire a cryptosystem to exactly
satisfy the extended key avalanche criterion and py, = 1/2 for any ciphertext bit and set of «
key bits. In reality, cryptosystems will likely only approximately satisfy the criterion and the
key avalanche probability can be represented as

Pka = (1/2) — €. (1)

We refer to € as the key avalanche error and note that the value of |e| is typically very small.
A key clustering attack may be mounted against a cryptosystem which has poor extended key
avalanche characteristics (i.e., a large value for |e|). The complexity of the key clustering attack
is essentially a product of the number of key trials required to find a key in the neighborhood of
the correct key and the number of known plaintexts required to determine that a test key is in
the neighborhood. Cryptosystems with large values of « and large corresponding values of |¢|
require few key tests before finding a key close to the actual key and few known plaintexts to
determine that a tested key is in the neighborhood of the actual key and, hence, are susceptible
to key clustering attacks.
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(b) Network Model Assumptions

An analytical model for the strict avalanche characteristics of SPNs is presented in [11]. We
now extend the methodology to develop a model of the key avalanche characteristics for a one
bit key change, i.e., x = 1. The model approximates each S-box in the network as a stochastic
mapping and calculates the key avalanche probability for each round recursively assuming a
one bit key change.

We shall assume that the cryptosystem of interest is an N-bit block cryptosystem constructed
using n x n S-boxes such that N = n2. For example, a 64-bit SPN constructed using 8 x 8
S-boxes is a practical cryptosystem that satisfies these constraints. The network of Figure 1 is
also a simple illustration of such a network with N = 16 and n = 4.

In the model, each S-box behaves as a random variable sclected uniformly from the set of
possible bijective mappings. Hence, an input change to an S-box results in a number of output
changes represented by the random variable D = wt(AY) where all possible values of AY
belonging to the set of 2® — 1 non-zero changes are equally likely. Therefore, the probability
distribution of D is given by

v J1 L wt(AX) =0
PD(D"O)“{O, ,wi(AX) > 1 @

and

~ab wt(AX) > 1 )

for 1 < d < n. For ease of notation, we will represent Pp(D = d) by Pp(d).

We assume that the network uses a simple, effective permutation defined by bit z of the output
of round r being connected to bit j of the input of round r + 1 such that

0 ,wi{AX) =0
Pp(D=d)= { ()

j=n-((i—=1) mod n)+ [(i —1)/n] + L. (4)

This permutation belongs to the class of permutations identified Kam and Davida [6] as providing
provable completeness in networks for which N = nf. Ayoub [12] further identified this
permutation as belonging to a class of permutations cryptographically equivalent to Kam and
Davida’s structure.!

The cryptosystem that we shall consider in the model is keyed using r = N key bits which are
all applied at each round by XORing with the S-box input bits. We assume that the ordering
of the key bits at the input to each round can be represented as a random variable. Hence,
the model determines probabilities by averaging over all possible placements of the one bit key
change in each round.

1

The class of permutations identified by Ayoub are particularly useful for networks of an
arbitrary number of rounds because they are optimal (in the sense that they provide completeness
in the fewest number of contiguous rounds) and are easy to implement since they allow the use
of the same permutation for each round.



138

(¢) Computation of Key Avalanche Property

The recursive model is based on finding the probability distribution of the number of S-boxes in
a round which have changes at their outputs given the probability distribution for the previous
round when a one bit key change is applied. From the probability distribution of the number
of S-boxes with output changes, it is possible to derive, under the assumptions of the model, a
probability distribution of the number of bit changes at the output of a particular round. From
this, the expected number of bit changes and, hence, the key avalanche probability are easily
determined.

Let W, represent the random variable corresponding to the number of bit changes (caused by
the complementation of one key bit) after round r, i.e.,

W, = wt(AY,,) (5)

s=1

where AY,, is the output change of an S-box numbered 5,1 < s<n,inroundr,1 <r <R.
Assuming symmetry in the location of a key bit change and the resulting output bit changes,
the key avalanche probability after » rounds corresponding to any ciphertext bit and key bit
change is given by the expected value of the number of bit changes divided by the block size,
ie., prg = E{W,;/N}. Therefore, we are interested in determining the probability distribution
P(W,). For notational convenience, we let P(W, = w,) = P(w,).

Let L, be a random variable representing the number of S-boxes in round » which have changes
at their outputs, i.e., L, = #{s | wt(AY,s) # 0}. The probability distribution of bit changes
for the output of round r may be determined from

P(w,) =Y P(w, | 1) P(l,) (6)

=0

where the variable I, represents a particular value of the random variable L,. Since the single
key bit change must cause a change in the output of one, and only one, of the first round S-boxes,
we can write the first round probability distribution of L, as

P(L;::g:{é 2:1 ™

Consequently, the probability of [,;; S-boxes in round r + 1 with output changes may be
determined recursively using

P(lr41) = ) P41 | 1) - P(Ir), @®)

=

In order to determine P(W,) and, subsequently, the expected number of bit changes, we must
therefore derive expressions for P(w, | l;) and P41 | I;).
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Consider first the determination of P(w, | I,). Let d = [d; d3 ... d;.] where d; € {1,...,n} is
the number of output changes, wi{AY), of the i-th S-box of round r that has an output change.

Define :
A={d Zd,-:w,} 9

to represent the values of d for which there are a total of w, bit changes at the output of round
r. The probability of w, output bit changes given that I, S-boxes have output bit changes is
given by

P(w: | ;)= Y P(d) (10)
deA
where |
P(d) = [ Po(dy). (11)

Consider now the determination of P(l,4; |[;). Let ¢t be the number of S-boxes in round
r + 1 that do not have any input changes and let 4 be the number of S-boxes in round
r + 1 that have input changes of one bit only, ie., ¢t = #{s|wt(AX(41),) =0} and
b= #{s|wt(AX(r41)s) = 1}. In order to determine P(l,41 |l;), we initially consider the
joint probability of b and ¢ given I, S-boxes with output changes in round », P(b,t | ,).
Define the probability P(é | d) to be the probability that at least § particular S-boxes in round
r + 1 are not affected by input changes given that a specific d occurs. Further, let P(p | ¢,d)
represent the probability that at least p particular S-boxes have only one input bit changing given
that ¢ S-boxes do not have any input changes and a specific d occurs. Letting T = {1, ..., n}l',
the probability of interest is given by
P(b,t|1) = P(bt,d)
deT

=Y P(b|t,d)- P(t|d)- P(d)

deT

ey

deT p=

. YA ANS
> () (Hreia-pa
Equation (12) is derived by considering the application of the extension of the inclusion-exclusion
principle [13, p.271] in order to determine P(&|¢,d) and P(¢ | d).

The probability P(d) is determined as in equation (11) and from [11], we have

P(6|d) = IL]I ((“—6)) .

(13)
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We shall determine the probability P(p |¢,d) in the following manner. Without loss of
generality, consider that the last ¢ S-boxes in round r + 1 are the S-boxes which do not have
any input changes. Let N; represent the number of arrangements for the output bit changes of
round = satisfying d such that the last ¢ S-boxes in round r + 1 have no input changes and the
remaining n —t S-boxes each have one or more input bit changes. Hence, V; can be determined
by computing the number of arrangements with exactly zero of the remaining n — ¢ S-boxes
having no input changes. Using the inclusion-exclusion principle this is given by

Ny = nf(—l)“(" _t) il ("4 4. (14)

p=0 # 1=1

Further, assume that the first p S-boxes in round r 4+ 1 have only one input change. Define
the vector h = [hy hy ... by ] where h; = {0,..., p} represents the number of outputs of the i-th
S-box in round r with output changes which provide an input change to the first p S-boxes.
Hence, h € H where

I
H= {hth.-=p}. (15)

i=1

Let N, represent the number of arrangements of the S-boxes in round r which originate input
changes to the first p S-boxes. Hence

I '
N, = pl/ lH h.-!]. (16)

=1

Lastly, define NV, as the number of valid arrangements of bit changes such that the remaining
n —t — p S-boxes in round r + 1 have one or more bit changes at their input. Once again
applying the inclusion-exclusion principle, this is given by

N _”E*:-p N ﬁ n—t—p-p ,
T p=0 (_)( I )‘-=1( d;‘—h,' ) ( )

The probability P(p | ¢t,d) can now be computed as

P(p|t,d)= ) N,N,/N,. (18)
hel

Using the probability P(b,t|I;) it is possible to compute P(l,4; |I,) by determining the
expected result given that a key bit change is randomly XORed to one input bit of round r+ 1. If
we ignore the effect of the key bit change, the number of S-boxes with output changes is simply



141

given as lr4; = n—t. However, in determining the effect of the key bit change we must consider
the following three cases, their probability of occurrence, and their resulting implications:

1. Key change XORed with bit from S-box with no input changes (probability = t/n) =
Ir+1 =n-—14+ 1.

2. Key change XORed with bit from S-box with one input change (probability = b/n) = lr41 =
n — t — 1 with probability 1/n, or l,4; = n — t with probability (n — 1)/n.

3. Key change XORed with bit from S-box with more than one input change (probability =
l1—tn-b/n) =Ly =n-1t

Hence, given P(b,t | I.), we can compute P(l,41 | {;) by:

n—t
t
P(lyy =n_t+1|1,)=Z;.P(b,t|z,)

b=0
n—t
P(I,.+1=n—t—l11,):2%-P(b,t|lr) (19)
b=0
n—t ¢ b
Plloyy=n—t] :,)=Z(1_;_ Yv‘) P t|1,).

=0

Using this analysis, we have estimated the key avalanche probability for-a 64-bit SPN and,
subsequently, determined the key avalanche error ¢ as a function of the number of rounds. The
results are listed in the second column of Table 1.

IV. Methods of Determining Close Keys

~ Using the key avalanche mode! presented in the previous section, we can now determine the
security of an SPN against exploitation of weak key avalanche for a key clustering attack as a
function of the number of rounds of substitutions. In this section we examine two methods for
‘determining that an experimental key is close to the actual key. Specifically, for each method
we determine the number of known plaintexts, A'p, required to reveal that two keys are close
to each other.

In developing a lower bound on the complexity of the key clustering attack, we only consider
the number of known plaintexts required to determine if an experimental key is close to the
actual key; we do not consider how many trials are required before we expect to pick a close
experimental key. Hence, although Ap gives an approximate lower bound on the complexity
of the key clustering attack, in practice, the complexity of the attack will be much higher than
Np since it will typically take a large number of trials before a selected key is close to the
actual key. In the approach we make the reasonable assumption that the magnitude of the key
avalanche error |e| is maximized for £ = 1.
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(a) Ciphertext Correlation

In a cryptosystem with weak key avalanche, an obvious method for determining whether an
experimental key is close to the actual key is to search for correlation in the ciphertext output
bits. If there is a high enough degree of correlation it is likely that the experimental key is a
small Hamming distance from the actual key.

The problem may be considered to be a hypothesis testing problem with one hypothesis, Hy,
being that the test key comes from the neighborhood (i.e., for x = 1, within one bit) of the correct
key and the other hypothesis, H1, being that the key is not in the neighborhood of the correct key.
Let ex represent the value of the key avalanche error for x = 1 after R rounds of substitutions.
Assume that the probability that a ciphertext bit changes under hypothesis Hy or H; is given by
po = 1/2 — ep or p1 = 1/2, respectively®. Let 5 represent the number of samples of ciphertext
bit changes required to test a key and, hence, the number of known plaintexts required to test
a key is given by Np = n/N. The number of bit changes in 5 ciphertext bit change samples
follows the binomial distribution for each hypothesis. Therefore the expected number of bit
changes and variances are given by

2
Hy: po=n/2-nep, oy = n(1/4 - e;)
2
H: pm=n/2 o; =1n/4.
Since ep is typically very small, ¢} < 1/4 and of ~ 0. = n/4. Therefore, let 0% = /4

represent the variance of both hypothesis distributions.

Since 7 is typically large, the binomial distribution for each hypothesis may be approximated as
a Gaussian distribution with the means, pu( and p,, and variance o%. For convenience, we shall
assume that the acceptable probability of error in selecting a hypothesis is the same for both Hy
and H;. Hence, considering the symmetry of the hypotheses, we require 5 large enough so that

(20)

po +aocx uy — ac (21)

with the significance level « selected to provide a suitably small probability of error in the
hypothesis test where the probability of error is given by

Q(a) = -\-/52_-; / e = 2dy, (22)

Hence, n¢g — /Mo = 0 and, consequently, n ~ (afer)?.
For an R round SPN, the number of known plaintexts required to test a key is, therefore,

2
Np ~

a
N e%{
where « is selected to provide a suitably small probability of error in the hypothesis test.
)

(23)

Note that p; = 1/2 implies that ¢ = 0 for « # 1. In practice, the key avalanche error ¢ for
different values of £ # 1 would not necessarily be exactly zero. However, since the assumption
results in a lower bound on the security analysis, it is therefore suitable for our purposes.
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(b) Meet-in-the-Middle Correlation |

Similarly to the ciphertext correlation approach we may consider identifying close keys by using
an experimental key to encrypt the known plaintexts for the first B/2 rounds and to decrypt the
known ciphertexts for the last /2 rounds. This generates two values for a middle block of NV
bits which can be checked for correlation. Let g/, represent the value of e for R/2 rounds.
If epy, is large, then the two sets of middle bits are significantly correlated to the actual bits
and, therefore, are highly likely to be the same. We refer to the correlation of the two sets of
middle bits as meet-in-the-middle correlation. Note that it is not necessary or possible for the
cryptanalyst to know the actual middle bits.

Let prj; = 1/2 — epy, represent the probability that a middle bit is different than the actual
middle bit given that the experimental key selected is within distance one of the actual key.
Assume that the key avalanche probability is the same backwards and forwards. The probability
that two experimental middle bits are the same, pys, is given by the probability that both bits
are correct or that both bits are incorrect. That is,

oy = (prp)’ + (L= pry2)’

24
= 1/2 + 2}, @9

As before, we define hypothesis Hj to be that an experimental key is close to the actual key and
hypothesis H; to be that it is not. The expected number of ciphertext bit changes and variances
for each hypothesis are

2
Hy: o =n/2—2ne§2/2, o =n(1/4——4eé/2)
Hi: pm=nf2 oy =n/4

Using an analysis similar to the previous case of ciphertext correlation, for an R round SPN, we
may determine the number of known plaintexts required to test a key to be

(25)

a2

4N e‘j‘{ /2

Np = (26)

where « is selected to provide a suitably small probability of error in the hypothesis test.

V. Results

Clearly the advantage of using one form of the attack over the other depends on the relative
values of eg and epj,. For an SPN with N = 64 and a key size of r = 64, using the values
of the key avalanche error determined by the model of Section III and presented in the second
column of Table 1, we have calculated the number of known plaintexts required in order to test a
key to determine whether it is within distance one of the actual key as a function of the number
of substitution rounds. The results for both methods of determining close keys are presented
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Rounds Key Avalanche | 1 o text Correlation | Meet-in-Middle Correlation

R Er:or Np Np

1 4.37 x 1071 5 -

2 2.21 x 10~1 20 7

3 2.98 x 10™2 1124 -

4 1.59 x 1073 3.98 x 10° 105

5 6.75 x 10~% 2.20 x 108 -

6 2.55 x 10~% 1.54 x 1011 3.16 x 10°
7 9.09 x 1078 1.21 x 10 -

8 3.12 x 1079 1.03 x 1017 3.96 x 1010
9 1.05 x 10~10 9.16 x 10'° -

10 3.45 x 10~12 8.42 x 1022 1.21 x 1016

Table 1. Results for SPN with N =64, n = §, and o = 8§

in columns 3 and 4 of Table 1. The significance level for the hypothesis test was selected to
be o = 8. Note that it can be shown [14, p.569] that Q(a) < e=o*/ 2/2 and, hence, although
increasing the value of « does not significantly change the value of Ap, it does significantly
decrease the likelihood of an error in the hypothesis test.

From the table we can determine the number of rounds required by an SPN in order to provide a
level of security against key clustering equivalent to exhaustive key search. The results suggest
that the meet-in-the-middle approach requires fewer known plaintexts to identify a close key. For
both methods, when R = 10, the number of plaintexts required to test a key satisfies Np = 253,
Combining this bound on Ap with the number of trials required to select a key close to the
actual key results in a complexity much greater than the 264 key trials required in exhaustive key
search. We conclude that a 64-bit 10-round SPN with a 64-bit key and 8 x 8 S-boxes is expected
to be unbreakable using a key clustering attack exploiting a key avalanche weakness. Further,
since the complexity of the attack is likely to be far greater than Ap, our analysis suggests that,
in practice, an 8-round SPN with Ap = 235 will have adequate resistance to key clustering.

VI. Conclusion

We have presented an analysis of the relationship between the key avalanche property and key
clustering. Using a stochastic model of the key avalanche property we are able to determine
the minimum number of rounds required for an SPN to ensure that a key clustering attack,
exploiting weak key avalanche, will fail.
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