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Abstract

Tree-structures have been proposed for both the construction of
block ciphers by Kam and Davida [7], and self-synchronous stream
ciphers by Kiihn [9]. Attacks on these ciphers have been given by An-
derson [2], and Heys and Tavares {6]. In this paper it is demonstrated
that a more efficient attack can be conducted when the underlying -
boolean functions for the cells are known. It is shown that this attack
requires less than % the chosen ciphertext of Anderson’s original at-
tack on Kiihn’s cipher. We also comment on an improved version of
Kiihn’s cipher that was modified in light of Anderson’s original attack.

=The work reported in this paper has been funded in part by the Cooperative Research
Centres program through the Department of the Prime Minister and Cabinet of Australia.
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1 Introduction

This paper deals with the cryptanalysis of ciphers which can be reduced to a
boolean function which has a iree-structure, such as the cipher proposed by
Kiihn [9], and Kam and Davida’s construction [7] of substitution-permutation
networks (SPNs} which ensure the completeness property. Anderson [2] has
shown that a tree-structured network is vulnerable to a divide-and-conquer
style chosen-ciphertext attack. Heys and Tavares [6] have provided an exten-
sion of Anderson’s attack which is applicable to tree-structured SPNs.

A framework is provided for discussion of tree-structured function net-
works. Anderson’s attack is restated, along with an improvement which is
both faster and more effective. Against Kiihn's cipher, the improved attack
requires less than 1 5 of the chosen ciphertext required by Anderson’s attack.
In addition, the 1mproved version recovers the secret key explicitly, whereas
the original attack provided sufficient information to mimic the cipher, with
the key remaining implicit. Both attacks rely on the cipher’s tree-structure
for their operation.

In [3], Anderson reports that Kiithn has suggested that the insertion of a
random bit-position permutation between rows of a tree-structured network
will prevent the operation of Anderson’s attack. However we present an
approach which exploits the tree-structure to quickly unravel the permutation
to a degree sufficient to allow Anderson’s attack to proceed.

2 'Tree-Structured Networks

Large functions F : Z + Z, can be constructed as a network of smaller
sub-functions called cells, where each cell has m inputs, m < N. With each
network we can associate a graph where cells become vertices and connections
become edges. In this paper we will be concerned with functions for which
the corresponding graph is a complete m-ary tree [8]. Kiihn’s cipher uses a
125-bit function constructed as a complete 5-ary tree of depth three, and is
presented in Section 2.2. From now on in this paper we will use the term
tree-structure to mean complete m-ary tree-structure.

A tree-structured network of depth R can be considered as R rows of m-
input cells, with m#-" cells C” in row r. The total mumber of cells in a tree-

structured network is ¥—=. The network function is denoted Fm,t(X ) =
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Each N-bit network input will induce a corresponding mf®+1~" bit value Z,
at the output of row r, which is the input to row r + 1. Adams [1] first
observed that tree-structured functions perform poorly with respect to the
strict avalanche criterion [12]. It can be shown that for a function arranged
as a tree-structured network of random balanced m-bit sub-functions, the
probability of the output changin? in response to a single input bit change

is given by (3 +¢&)%, where g = § Tl'——f) )

2.1 Isolation of Cells

The output value of any cell Cy.; in a tree-structured network is dependant
on a subset of the network input bits, called the wvital set V,.;. The remaining
input bits P.; = X — V,.; will be called the propagation set. The output 2, ; of
cell C,; is a function of the contents of the vital set V,.;, so that z,.; = f.;(V,.;).
If the network is a complete m-ary tree, then |V, ;| = m”. Changes to the
contents of a vital set may effect no more than one cell in each row.

Consider a series of network inputs which hold the contents of P,; con-
stant while the contents of V,.; are varied, causing the output of cell (., to
change. For some values of P,;, the propagation of this change will be halted
at an internal row, and the network output will remain constant. However,
other values of P, ; allow the cell’s output change to propagate to the network
output. If such a value for P.; is found then cell {,; is said to be isolated.
Omnce cell O, ; is i1solated,

F‘:mt( L/lt ) Pr.i) = fr,i ( Vrz) +c

where ¢ € {0,1}. Thus we can determine the truth table for f.; up to
complementation by cycling through the values of V,.;.

Using a simple algorithm, the average number of trials required to isolate a
R . R—r4+1 . . . Y
cell is (Hé)lc ' , and the time to isolate a top row cell is exponential in the
depth of the network. However, since the propagation sets are not disjoint,
P,; can be partially constructed from P,y ;, where cell Cy; provides an input
to cell Cry1,;. This observation leads to a faster algorithm, first presented by

Heys and Tavares [5], in which the expected number of iterations to isolate

5 22
a cell is (sz-) ~ 4. Approximately, an average of eight chosen inputs are
required for each cell, regardless of the depth of the network.
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Figure 1: Kiihn’s Cipher

2.2 Kihn’s Cipher

An example of a tree-structured cipher was proposed by Kithn in [9}, and
is shown in Figure 1. The boolean function of Kiihn's cipher is a complete
5-ary tree of depth three. It uses the last 125 ciphertext bits as input to the
31 cell function. The cipher keying is achieved by masking the input to each
cell with a 5-bit subkey. Each bit of the key is exclusive-ored with a single
bit at the input to one of the cells. The key length is 155 bits. BEach cell in
the cipher performs the same 5-bit function

flz1, 22, 3, T4, T5) = o1+ @+ (e o3} (et zatzs )+ (21 + 24 ) (ot 23)2s (1)

which was chosen to be 1-0 balanced and 1**-order correlation immune [11].
The full network function is 7*"-order correlation immune.

3 Anderson’s Attack

In this section, Anderson’s attack [2] is described, which is general enough
to be applied to any tree-structured cipher. The attack does not make any
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assumptions about the basic cell function, or the method of keying, so that
each cell could be selected from the set of all m-bit functions. The attack has
two stages: stage 1 isolates each cell {except the last), and stage 2 replaces
each cell with a look-up table (LUT). The resulting network of tables cor-
rectly mimics the input-output mapping of the cipher, for the key in use at
the time the attack is made. The key is hidden implicitly in the look-up ta-
bles obtained. A very efficient algorithm for Anderson’s attack was presented
by Heys and Tavares in {5] and {6].

Stage 1 of the attack is probabilistic, and against Kithn’s cipher requires
an average of 240 chosen inputs. Stage 2 is deterministic, and requires 992
chosen inputs (32 inputs for each of the 31 cells). The full attack can be
expected to require 1232 chosen inputs each of 125 bits. In general, the

attack requires
B 1
(8 + 2™) (m )—8

m—1

chosen inputs. For an arbitrary network, the attack requires O(2™mmf-1)
chosen inputs.

4 The Improved Attack

This section presents a modification to Anderson’s attack which takes advan-
tage of the known cell function from [9] to bypass construction of the LUTs
and recover each subkey directly. Kiihn’s cipher is based on a cell function
which was selected to satisfy certain essential cryptographic criteria. One
undesirable property of this function, which has been previously overlocked
in the literature, is that it has a linear structure [4]. The output of Kiihn’s
function remains unchanged when the first four input bits are simultaneously

complemented: . .
f(X) = f(X +11110). (2)

so that the information content of each subkey is reduced from five bits to
four. This is true for each of the 31 cells in the network, so that the total
effective key length is actually 124. Each 155-bit key used is cryptographically
equivalent to 2°1 — 1 other keys.

Since the look-up tables of Anderson’s attack can appear in one of two
complemented forms, let the standardised look-up table be such that each of
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its elements has been XORed with the look-up table value for the zero input.
A standardised look-up table defines a partition of the possible cell input-
values into two sets: those with a table entry 0, and those with a table entry 1.
The subkey mask uniquely determines the partition, since the cell functions
are fixed. For any given cell function, one-to-one mappings exist between
the input masks, partition transformations, and the standardised look-up
tables. The partition can be precomputed for each of the cryptographically
distinct input masks, so that the subkey can be found explicitly from the
standardised lock-up table.

Table 1. shows the standardised truth tables obtained for Kiihn’s function
when the input has been masked with the indicated subkey. Because of the
linear structure in (2), a standard form of subkey notation has been adopted
here in which the first bit is set to 0 and the other four bits constitute the
effective subkey. The first row of this table shows the unmodified truth table
for Kiihn’s function, given the natural binary representation order along the
horizontal (inputs 0..31).

(iiven that, in general, the input mask contains only m bits of information,
it is possible to determine the subkey using O(m) chosen inputs. In the case
of Kithn's function it is possible to dynamically choose four inputs which will
uniquely determine the subkey. Let the first two chosen inputs be 1 and 12,
which are 00001 and 01100 in binary. This choice allows the cryptanalyst
to reduce the number of subkeys to a set of four candidates. The next two
inputs to choose are decided by the standardised result of input 12. There are
several equally effective choices, one of which is presented here. If 7(12) = 0
then the next two chosen inputs should be 2 and 4. If 7(12) = 1 then choose
3 and 5. The subkey of the cell under scrutiny can now be found from Table
2.

In general, the improved stage 2 of the attack requires m chosen inputs
per cell, rather than the original 2. With stage 1 unaltered, the full attack
can now be expected to require

(8+m) (mﬁ”l)—s

m—1

chosen inputs to complete. If Kiihn’s cipher is implemented using a 5-bit sub-
function without a linear structure, then the improved attack is expected to
require an average of 382 chosen inputs, compared to the 1232 inputs required
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| Subkey l Standardised Truth Table |

00000 | 00000111111001101001101111010000
00001 | 00001011110110010110011111100000
00010 | 00001101101110010110111001110000
00011 | 000011100111011010011101101106000
00100 | 01110000011011101011100100001101
00101 { 01001111011000101000100111110001
00110 [ 060101111011001000001100111111000
00111 | 00011111100110000010011011110100
010600 | 00011001111110000010111101100100
01001 | 00100110111101000001111110011000
01010 | 01000110111100101000111110010001
01011 ; 01110110000011101011000010011101
01100 | 01101110011100000000110110111001
01101 | 01100010010011111111000110001001
01110 | 01100100001011111111100000011001
01111 | 01100111111000000000101111011001

Table 1: Standardized Truth Tables for Kithn’s Function when Input Masked

| r(1),7(12) | 7(2),7(4) | Subkey || »(1),7(12) | »(3),7(5) | Subkey
0,0 0,0 0 0,1 0,0 1
0,1 3 ' 0,1 2
1,0 9 1,0 8
1,1 6 1,1 7
1,0 0,0 10 1.1 0,0 13
0,1 5 0,1 14
1,0 15 1,0 4
1,1 i2 1,1 11

Table 2: Full Subkey Identification for Kiithn's Function
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by the original attack. The linear structure further reduces the number of
inputs required by 31 {one per cell) to 351.

It should be noted that the fast attack on Kithn's cipher described above
can be applied to any tree-structured cipher in the case where the underlying
boolean functions for the cells are known. This includes SPNs.

5 Random Permutations in Tree-structured
Networks

One way which has been suggested in [10] to improve the design of Kiihn's
original cipher is to insert a random bit position permutation between rows
1 and 2. This conceals the vital set of any cell in a row lower than the
permutation, so that these cells cannot be isolated in the same way as in
Section 2.1. Note that the tree-structure of the network is preserved, so
that the subkeys of the cells above the permutation can be found. The
cryptanalyst can effectively make chosen inputs to the permutation. The
output of the permutation is the input to five cells, so that the permutation
partitions the 25 input bits into five sets of five positions each. The method
now presented will reveal the five set partition of the bit positions. The
original look-up table attack can then proceed, since the vital sets of all cells
will be known. Each look-up table can then be determined as before, this
time replacing the cell-function, input mask and 5-bit permutation all at
once.

Bit position 7 is said to be active for input [ in boolean function f if
F(IY # f(I + ¢), where e; is the unit vector with 1 in position 7 and 0
elsewhere. Any bit position which is not active for some input is said to be
idle for that input. Each 25-bit input to the permutation can be associated
with an activity set, which is the set of all bit positions which are active for
that input. An activity set can be determined with a group of 26 chosen
inputs (the input itself and the other 25 at Hamming distance one from it}.
The activity sets of two inputs at Hamming distance one can be found with 50
chosen inputs. For Kiihn’s cipher, it turns out that the way these two activity
sets intersect provides a lot of information about the permutation. This is
possible due to an interaction between the tree-structure of the network and
properties of Kithn’s function relating to the intersection of activity sets
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which are associated with inputs at Hamming distance one.

5.1 Activity Sets in Kiithn’s Function

It is a universal property of bit activity that, given two inputs which differ
in a single bit, the activity type of that bit is the same for the two inputs.
Whether a particular bit position is active or idle will depend on the contents
of the rest of the input vector (the other m — 1 bits). When flipped, an active
bit will remain active, and an idle bit will remain idle.

In general, whenever an input bit is flipped producing a new input, the
associated activity set is changed. A function can be characterised by the
constraints on possible activity sets, and the manner in which the activity
sets change in response to a single input bit change. The activity set changes
for Kithn’s function have been fully explored, show interesting properties of
symmetry, and will now be presented. :

Every 5-bit input to Kithn’s function has either 2 or 3 members in its
associated activity set, with equal frequency. Activity sets of other sizes do
not occur for this function, although sizes from 0 to 5 would be possible
in general for 5-bit functions. Whenever a single input bit is changed, the
associated activity set will change, in accordance with the state transition
diagram of Figure 2. In Figure 2a, the arrows indicate possible transitions
between activity sets. In Figure 2b, those activity sets with similar transition
behaviour are grouped together. Within the group, each set is an equally fre-
quent outcome of transitions to that group, given that all inputs are equally
likely. The arrows in Figure 2b are labeled with the probability of those
transitions for the complementation of a randomly chosen bit.

For every transition to or from a set with two members, exactly one ele-
ment will be in common. Every transition between 3-member sets replaces
one member, leaving exactly two members the same. These rules holds re-
gardless of the activity type of the bit flipped. A related property of the
transitions is that in every case either exactly one bit is lost from the active-
set, or exactly one bit is added to the active set, or both. The fact that the
size and contents of the activity set change in such a regular manner has
been exploited in developing the following method for partially solving the
permutation.
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Figure 2: Activity Set Transitions for Kithn’s Function

5.2 Finding a Partial Solution of the Permutation

After being permuted, a 25-bit input will induce some 5-bit value at the input
to the last cell, which (for Kiithn’s sub-function) will make two or three of the
five row 2 cells active. All of the elements of the active set A, associated with
a 25-bit input I, will be bit positions which lead to one of these active cells.
Each of these cells will have two or three {ocally active input positions which
are active for that cell. The size n(A) of the active set A, will therefore be
bounded by 4 < n(A} < 9.

Let Ay and A, be the two active sets associated with inputs fE, and f;
which differ only in one place (the flipped bit F). Let S = AjNA;, L = Ag—S
and G = A; — 5. It follows that the sets L, S, G are mutually disjoint.

On its own, a single cell has two types of input bits: active and idle.
Expanding to a tree-structured network, each additional row of cells doubles
the number of input bit types. In Kihn’s cipher, two rows occur after the
permutation, so there are four types of input bits: active and idle bits each
for active and idle cells.

The correct inference about the permutation is determined by the number
of elements in the sets L and (. Each interpretation is uniquely associated
with a particular type of flipped bit. Note that at the time the flipped bit
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is selected, its type is not known. Once the two activity sets are found, the
number of elements in the sets L and G will be known, and then the type
of flipped bit can be inferred. This allows the correct interpretation to be
made, and a 25 by 25 table can be further filled in, reflecting the increased
knowiedge about the permutation.

The form of activity set change is distinct for each of the types of bits
chosen to be flipped. The cases with their effects are:

(i) The flipped bit is a locally idle bit of an idle cell. Whenever the
activity set does not change, the cryptanalyst knows that the bit chosen to
be flipped must lead to a different cell than all bits in the active set.

(i1) The flipped bit is a locally idle bit of an active cell. The active set
will loose and gain only bits which lead to the same cell, which is the cell led
to by the flipped bit.

(ii1) The flipped bit is a locally active bit for an idle cell. The set of active
cells is changed, with the restriction that the cell led to by the flipped bit
remains idle. The result is that the bits lost from the active set, those bits
gained by the active set, and those bits which remained in the active set,
must all lead to different cells, all of which are different cells to that led to
by the flipped bit.

(iv) The flipped bit is a locally active bit in an active cell. This is the
case of flipping a bit in the active set of the initial arbitrary input. This case
alters both the set of active cells and the set of active bits in a cell which
remains active. This case can be confused with the above two cases, so it is
avoided by choosing to restrict the flipped bit to those not in the active set
of the initial arbitrary input.

(ziven case (iv) is prohibited, the other three cases can be identified and
interpreted as follows. If the active set does not change (case (i)), then we
conclude that the flipped bit leads to a cell different from that of any bit in
the active set. If n{L) =1 or n{G) = 1 or both, then we conclude that the
bit flipped F, the bit(s) lost L, and the bit(s) gained G, must all lead to the
same cell. This corresponds to case (ii) above. Any other resulting change
in the elements of the active set corresponds to case (iii): each bit which is
an element of any one of the sets L, S, G, F must lead to a cell different to
each of the bits in the other three sets.

With these simple interpretations, a 25 by 25 table can be filled in. Any
element (z,7) in the table can take on one of three values representing the
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known relation between the bit positions ¢ and j. Of course, by symmetry,
(1,7} = (4,7) for all i and all . The table can be initialised by setting all
(7,7} = 0, indicating no knowledge. The information that bit positions 2
and j lead to the same cell is represented as (¢, 7) = 1. Finally, (z,j) = —1
can indicate that bit positions : and j lead to different cells. Each of the
three cases will allow several of the table elements to be set at 1 or —1 as
applicable. The table will be complete when each row contains either five 1s
or twenty —1s.

The table can be filled in faster by using the transitive property of the
‘leads to same cell’ relation. In other words, if we know already that (a,b) =1
and we now discover that (b,¢) = 1, then we can immediately state that
(a,c¢) = 1. The opportunity for this type of inference should be checked
every time a new table element is set from 0 to 1. As the table becomes
almost full, the contribution from this inference will become greater than the
contribution from new groups of chosen inputs.

This attack on the permutation has been implemented on PC and found
to require an average of 1350 chosen inputs to complete.

6 Conclusion

Ciphers based on tree-structured boolean functions are not secure. Although
tree-structures make hardware implementation simple, a fundamental weak-
ness is introduced which allows a divide-and-conquer attack to be made.
The cipher can be mimicked or fully broken, depending on the informa-
tion available to the cryptanalyst. Insertion of a random permutation pro-
vides some protection from cell-replacement attacks, however one example is
known where the permutation can be partialy unravelled to allow the attack
to proceed. This unravelling process exploited both the tree structure and
properties of the particular sub-function. Further research is required to as-
sess the general applicability of these methods to ciphers with other forms of
sub-function selection, or which are merely similar to trees in structure.
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Abstract

This paper presents a performance analysis of different block and stream cipher modes of
operation of the DES (Data Encryption Standard) encryption in a digital mobile radio
channel environment. Each DES mode offers a different level of cryptographic protection,
but also leads to a different cryptographic degradation. The objective here is to determine
the degradation effects of data enciphering on the channel reliability and to analyze the error
correction capability of BCH (Bose-Chaudhuri-Hocquenghem) error correcting codes. The
digital mobile communication channel is computer simulated using Fritchman’s error burst
channel model. It is shown that the performance of BCH codes depends strongly on the
burst error length distribution and also on the error propagation properties of the specific
DES mode used. Bit interleaving allows for a more efficient use of the error control code.

1 Introduction

To protect sensitive data transfers against passive or active attacks, it is necessary to encrypt
the data before transmission over the communication channel. The DES is a cryptographic
algorithm which can be used for low to medium security applications. High data encipher-
ment throughput rates are achievable and inexpensive hardware to implement it is readily
available. In a digital channel, DES can be operated in block cipher and stream cipher
modes, each one providing a different level of cryptographic protection. Unfortunately, en-
ciphering of data often results in a significant increase in the bit error rate (BER) at the
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Figure 1: Block diagram of DES secure communication link

receiver, due to error propagation, which is inherent in most encryption modes. This addi-
tional cryptographic degradation of the channel reliability is usually unacceptable in a mobile
communication channel where the signal already suffers from a relatively high BER caused
by multipath fading. To reduce the BER at the receiver to acceptable levels, Forward Error
Correction (FEC) techniques can be implemented to detect and correct channel errors. The
objective here is to determine the cryptographic degradation of DES encipherment on the
data bits at the receiver and to analyze the ability of BCH block codes to correct errors,
without and with bit interleaving. To avoid confusion concerning the BER, the following
definitions are used hereafter: DBER is defined as the (information) data bit error rate at
the receiver after FEC decoding and decryption, whereas CBER represents the channel bit
error rate and refers to the number of bits that are corrupted by the channel.

2 Digital Mobile Communication Link

Figure 1 illustrates the block diagram of a communication link in which DES encryp-
tion/decryption and BCH channel coding are used. The mobile communication channel
is characterized by fast fading of the signal power envelope at the receiver [15] due to mul-
tipath propagation caused by scatterers nearby the mobile. The drop in signal power can
be in the order of 20 to 30 dB [14]. This periodic variation in the signal strength results in
time intervals during which the channel bit error rate (CBER) is low, followed by usually
shorter intervals when the CBER can be higher by many orders of magnitude. To represent
the behavior of a digital channel with memory, many models have been proposed over the
years (10, 12, 13].
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The channel model proposed by Fritchman [10] can represent a wide variety of bursty
channe! conditions. It consists of a Markov chain with N states {Si,...,Sny} which is
partitioned into two groups of states: states S; to Sk represent error-free states while the
remaining states, Siy1 to Sy, are error states. Fritchman has proposed a simplified version
of the channel model where the Markov chain consists of (N — 1) error-free states and one
error state, i.e. Sy. Transitions are only allowed to the same state {e.g., from S; to S;, for
1 € i < N), from the good states to the bad one, and vice-versa (i.e., from S; to Sy and
Sy to S;). The simplified Fritchman channel model can still accurately describe the error
distributions observed in most digital channels with memory {4, 21]. The error distribution
is determined by the channel transition probability’s matrix P = {P; ;}, where P, ; indicates
the transition probability from the state S; to the state S;. The error-free interval length
distribution P(0™|1) can be expressed as a sum of exponential functions:

N-1
Py :
PO™1) =} 5= (R)™  form>1 (1)
i=1 1,3
The error-free interval length distribution P(0™|1) gives the probability of having m or more
consecutive error-free bits, provided that an error had occurred. The transition probability
matrix, P, controls the persistence of the states, and therefore, determines the distribution

of errors. :

3 Modes of Operation of DES and Cryptographic De-
gradation

The Data Encryption Standard constitutes an interesting encryption approach for appli-
cations requiring low to medium levels of security because of the high throughput rates
achievable (up to 100 Mbits/s). DES is a substitution-permutation encryption algorithm
[17] which encrypts blocks of 64 plaintext bits with a 56-bit key into a 64-bit ciphertext
block through a set of substitution and permutation transformations [1, 6]. In a digital
communication channel, DES can be implemented in either block cipher modes (i.e., Elec-
tronic Codebook (ECB) and Cipher Block Chaining (CBC) modes), where the plaintext data
bits are encrypted as 64-bit data blocks; or in stream cipher modes (i.e., Qutput Feedback
(OFB) and Cipher Feedback (CFB) modes) for which the data bits are enciphered indi-
vidually. Reference [18] provides a complete description of DES modes of operation. The
following discussion on cryptographic error degradation in the different modes of DES is
based on material readily available in the literature: the reader is referred to [20, 6, 19] for
further information.

In the ECB mode, a message stream is broken into blocks of 64 data bits and, then,
each block is encrypted as a unit, C; = DESk(M;), and transmitted over the channel. The
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receiver simply decrypts the received cipher block C;, where C] = C; @ E;, with the same
key (the element e; of the 64-bit error vector E; is 1 when the channel introduces a bit error,
or 0 otherwise). If C! = C;, i.e., no errors, then:

DESg(C}) = DESE'(Ci & Ei) = DESE' (C:) = M, (2)

Because of the complex relationship of all data bits within the encrypted block, a single bit
in error within a block will invariably corrupt about half of the 64 message bits: bit errors
propagate within the block in which they occur.

In CBC mode, the encryption/decryption of a block of data is made dependent on the
previously transmitted block. The plaintext block is added to the previous cipher block,
that is C; = DESk(M; ® C;_,), prior encryption. At the receiver, C] is decrypted and then
added to the previous cipher block Cj_;.

DESZ Cl)® Cj_, = DESR (Ci® E)® (Cisy ® Einy) = M, (3)

if C! = C; and C!_, = C;i_;. In general, j bits received in error within a block of 64 bits
will corrupt (64 + ) bits, that is, errors propagate within the block in which they occur
and in the next 64-bit block. An advantage of CBC is that the chaining of adjacent data
blocks prevents the insertion, deletion or replacement of cipher blocks [19], whereas ECB is
vulnerable to these attacks.

In the OFB stream cipher mode, the generated bit stream added to the data bits (to
form the cipher) is independent of the data bits being encrypted. At the transmitter, bit
c; = m; @ k;, where k; is a function of the 64 DES output bits:

kt' = fl [DESK(ki—Gd.) ki—637 ey ki—l)] (4)

where fi(e) indicates that only one of the 64 bits generated by DES, k;, is used while the
other bits are discarded. A bit received in error ¢, = ¢ @ e; is decrypted incorrectly at
the receiver since m = ¢, # ¢; @ k;. External bit synchronization is required between the
transmitter and receiver. However, OFB is the only cipher mode without any inherent error
propagation.

In CFB mode, bits are still encrypted individually but not independently of each other.

At the transmitter, bit ¢; = my @ k; where k; is now a function of the 64 previous ciphertext
bits:

ki = fi [DESk(Ci-64) Ci-63; - - - , Ci-1)] (5)

A erroneous bit ¢, will be decrypted incorrectly. Furthermore, since the key stream bits k;44
up to ki+es at the receiver are functions of the corrupted bit ¢, the next 64 consecutive bits
will be affected by that one error. Because of the diffusion property of DES, on average, about
half of those 64 bits will be erroneous. The cipher feedback mode is a self-synchronous stream
cipher: if bit synchronization is lost, this is equivalent to a bit error: once the erroneous digit
is cleared from the receiver memory, correct deciphering operation resumes. As for ECB and
CBC block modes, CFB is also resistant to bit tampering, while OFB is vulnerable to these
attacks.
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4 Channel Control Coding Simulation Results

A series of computer simulations has been done to assess the performances, in terms of data
bit error rate (i.e., DBER) versus the channel bit error rate (CBER), for digital channels
when DES encryption is used to protect the information. Figure 1 shows the components of
the digital mobile communication link under consideration. For the simulations, Fritchman’s
error bursts’ channel model is studied to determine the cryptographic degradation of the
block and stream cipher modes of DES. Six different sets of channel parameters are used:
these are based on actual measurements carried out in Quebec city [21]. Cryptographic
degradation and information bit error rate DBER are estimated over the range [9]: 10! <
CBER < 1073. Figure 2 show that, under identical channel and coding conditions, the
ranking in terms of the data bit error rate (i.e., DBER), obtained with the four DES modes
of operation is, from the lowest to highest DBER: OFB, ECB, CFB and CBC. Figure 3
shows the error rate obtained with a BCH(31,16,3) triple error correcting code over the
Fritchman’s channel. The ranking, from the lowest to highest DBER, is the same as before.
Note that, in this particular case, the grouping of errors into high error density clusters leads
to almost no improvement with this triple error correcting code due to the relatively low
correcting capability of the BCH code.

To reduce the data bit error rate DBER caused by DES cryptographic degradation,
Forward Error Correction codes, such as BCH block codes [2, 16], can be used, where k bits
of enciphered data are encoded in a vector of n bits (n > k) prior to transmission over the
channel, allowing the receiver to correct up to ¢ errors within the n bit block. The error
correcting capability ¢ increases as the number of parity bits (n — k) increases, but this
results in a decrease in the actual code rate, R = k/n, hence reducing the real throughput of
information across the digital communication channel. The BCH(n, k,t) codes are chosen
such that the code rate R ~ 75%, 50% or 33% for different codeword blocklenghts. Figure
4 shows the DBER, as a function of CBER, when DES is used in the ECB mode, for
BCH codes having the same code rate R = 50%, for different blocklengths n. It is observed
that an increase in n leads to a smaller data bit error rate. As shown for the CBC mode of
operation (see Figure 5), given a fixed blocklength n = 63, an increase in the error correcting
capability ¢t of the BCH code, and therefore a reduction in its code rate R, decreases the
DBER as expected.
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In some circumstances, the use of BCH codes may result in a DBER which is higher
than if no coding had been used. The average number of codewords N, required [8] to
encode a complete block of N encrypted bits (N, ~ [N/k]) has a significant impact on the
performance of the BCH code: given two BCH codes (n, k1,t1) and (n, ks, 2;) of the same
length n, where R; > R, it is possible for the code with highest rate to outperform the
other one when the former results in a lower value of N, than the latter. For instance, even
if a BCH(127,64,10) code is less powerful in terms of error correcting capability ¢ than
a BCH(127,57,11) code, an incorrectly decoded 127-bit codeword will affect only a single
64-bit ciphertext block for the BCH (127,64, 10) code while affecting the decipherment of
one or two 64-bit ciphertext blocks for the BCH (127,57, 11) code.

BCH channel coding provides better results when the channel is corrupted by random
errors. By applying bit interleaving on I consecutive BCH (n, k,t) codewords, the errors in
bursts are redistributed more evenly over the (I x n) bits [16). For channels with memory,
bit interleaving is effective if, the error correcting capability ¢ of the error control code is
sufficient to correct most channel errors after deinterleaving, and if, the interleaving degree
I is large enough to reduce the memory effect of the channel. However, a systematic delay of
(I x n) bits is introduced; for large values of interleaving degrees I and blocklengths n, this
delay may be unacceptable for real-time processing applications. The interleaving degrees
I employed for the simulations are I = 1 (i.e., no interleaving), 25, 100, and 300. Figure
6 shows the results obtained for the CBC block mode with the BCH(31,11,5) code. The
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largest interleaving degree provides the lowest data bit error rate, since ¢ is greater than the
channel error density.

5 Concluding Remarks

Simple encipherment methods, such as the Data Encryption Standard, can offer protection
of data against wiretapping at high data rates for digital mobile communication applications.
The four different modes of operation of DES, Electronic Codebook, Cipher Block Chaining,
QOutput Feedback and Cipher Feedback, provide different levels of cryptographic protection
of information. CBC constitutes the most secure protection scheme among them. However,
the use of DES encryption in the ECB, CBC and CFB modes leads to a cryptographic
degradation that translates into a significant bit error rate increase in the data, while no error
propagation occurs in the OFB mode. On the other hand, OFB requires bit synchronization.
Error control coding techniques, such as BCH codes, reduce the actual information error rate,
provided that their error correcting capability is larger than the error density. As shown, the
performance of BCH codes is strongly dependent on the burst error length distribution. For
channels with memory, channel errors can be spread more evenly in time by interleaving the
encoded bits before transmission and then deinterleaving the corrupted received bit stream,
thus making a more efficient use of the error control code capability. The bit error rate
performance with bit interleaving depends, however, on the actual error correcting capability
of the error correction code and, thus, its code rate. The tradeoff is a systematic interleaving
delay that may prove unacceptable for real-time mobile applications such as digital speech
transmission.
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