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Abstract. This paper extends the Petri net methodology for the specification and analysis of
cryptographic protocols. In particular, software to perform automated state-reachability analysis
has been developed. The intruder and each legitimate protocol entity is modeled by a Petri Net
Object (PNO). The goal of the analysis is to determine whether a cryptographic protocol can
withstand the attacks of the specified intruder. Hand analysis is not practical in most cases because
of the large number of actions the intruder may pursue. However, exhaustive state analysis on a
modern workstation is feasible for many protocols. Previous work is extended to model multiple
iteration and parallel session attacks. In particular, our approach is able to show that a reflection
attack can be executed on a simple one-way authentication protocol. The prevention of the
reflection attack is demonstrated through a slight modification of the protocol. The handset
authentication protocol used in CT2 and CT2Plus is also modeled and analyzed. A common
problem for two-party cryptographic protocols, which is solved by subsequent steps in this case,
is confirmed by this analysis. Future work on the methodology is described, and migration of the
software from Prolog to an object-oriented programming language such as C++ is planned.

1 Introduction _
1.1 Analysis of Cryptographic Protocols

Specification and analysis are two separate, but equally critical, tasks in the development of
cryptographic protocols for use in a desired application. The processes executed by the legitimate
participants and the messages flowing between them are defined explicitly in the specification. It
must be ensured that it is a complete and accurate description of the final implementation. Analysis
establishes the correctness of the protocol. It follows that the model used for analysis must match
the specification exactly.
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As with any communication protocol, verification of structurally dependent properties such
as liveness and boundedness must be performed. However, in addition, the analysis must consider
the security properties of the cryptographic protocol. An intruder is an additional entity which may
block, change, or inject messages on the communication channe] between the legitimate parties.
Analysis may either show that such attacks succeed in subverting the original goal of the protocol,
or prove that they do not. Three approaches to analyzing the security properties of cryptographic
protocols are: logical, algebraic, and state-transition-based. Verification methodologies employ one
or more of these approaches.

In the logical approach, a protocol is transformed into logical assertions. The logic is a
mechanism used to analyze the beliefs of the trustworthy participants in the protocol which evolve
as a consequence of the intercommunication. The idealization step required to generate the
assertions means that this approach may not be appropriate for defining a complete protocol
specification. BAN logic discussed in [1,2] is an example of cryptographic protocol verification
based on logic. By revealing previously undiscovered protocol flaws, BAN logic has demonstrated
that it is a useful methodology.

A comparison of three algebraic/state-transition-based analysis systems is given in [3].
Kemmerer uses a general-purpose tool for software specification called Inatest. The NRL Analyzer
and the Interogator, from Meadows and Millen, respectively, are systems based on Prolog which
are specifically developed to analyze cryptographic protocols. In algebraic analysis, expressions
representing messages are manipulated according to a defined set of rules. From this it may be
determined whether the design goal for the protocol can be violated. State-transition analysis
operates on a state model of the protocol. The model is executed to determine whether insecure
states can be reached. Flavours of both approaches are offered in each of the three methodologies
presented by Kemmerer, Meadows, and Millen. Of the three, the Interogator is the most
automated, but each tool has its particular strengths.

1.2 Petri Nets for Specification and Analysis

In the Petri net-based approach used in this paper, the same model is used for both
specification and analysis. The method is best described as state-transition-based. Coloured Petri
nets [7] form the formal specification language, and have a simple graphical representation (see
Figure 1). A Petri net is a graph with two types of nodes: places and transitions. Places are drawn
as circles, and may contain any number of dots, called tokens. In coloured Petri nets, each token is
assigned a colour which identifies its value. The contents of a place may be restricted to a particular
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class of colours, much like the way types restrict the values of variables in high-level programming
languages. The distribution of tokens in the set of places determines the state of the system.

The transitions, each depicted by a rectangle containing a label, define how the token
distribution will change as the system execution progresses; i.e., they represent events. Each
transition has zero or more input and output places. A directed arc is drawn from an input place to
the transition, and one is drawn from the transition to an output place. A double-headed arrow
indicates that the place is both an input and an output for the connected transition. In a given state,
a transition is enabled if appropriate tokens reside in each of its input places (as defined by the
transition). Enabled transitions may fire singly by removing a token from each input place (one for
each arc), and placing a token in each output place. A table, or a function, defines the relationship
between the input values and the output values. Firing changes the system state.

Figure 1. A simple Petri net with one transition, and four places.

An inhibitor arc, a special arc drawn with a small hollow circle on its tail, prevents a tran-
“sition from firing until the corresponding place is empty. Output/inhibitor arcs, arcs directed to an
‘output place with the inhibitor characteristics, are used in the protocol models. Another extension

to Petri nets, which evolved from work described in [8,9], is the Petri Net Object (PNO) which is
shown later in Figure 2. The PNO is a Petri net enclosed in a box with transitions at the perimeter
called ports. Ports are the only external access nodes in a PNO. The PNO is the “black box”
element from which the protocol entities are constructed. A port on a protocol entity is connected to
the port on another through an intermediate place which represents the channel. The level of detail
shown in the Petri net may be controlled by judicious use of PNOs. While the specification
contains implementation-level detail, the Petri net will depict the appropriate level of abstraction.
Thus, the Petri net model is a hierarchical tool well suited for iterative analysis and design.

2 Simple One-Way Authentication Protocol

The simple one-way authentication protocol is used by an entity A to verify the presence and
identity of another entity B. This protocol employs a challenge-response scheme. The entities A
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and B share a secret key k. Entity A sends a random value r (the challenge) to entity B; B responds
to A by returning e(r.k), the encrypted value of r under key k, where e is a symmetric encryption
function. The returned value is decrypted with key k by entity A. If the result matches the original
random value r, A accepts and the protocol terminates with success.

The objective of this protocol is to allow entity A establish that entity B was present (i.e.,
participated in the message exchange of the protocol) sometime during the interval between sending
a challenge and receiving a response.

One reason this protocol is chosen for study is to extend the classes of attacks modeled by the
Petri net methodology. It was taken deliberately since it is simple, it exhibits a weakness to
reflection attack, and there is a well-known modification which can prevent the attack.
Authentication is a recurring objective in many cryptographic protocols, particularly in those
designed for wireless communication systems. Studying this simple protocol leads to the
specification and analysis of practical, standard protocols such as CT2Plus.

2.1 Petri Net Model of the Protocol

The initial model of the simple one-way authentication protocol is shown in Figure 2. It
consists of two Petri Net Objects: one for entity A and another for entity B. These are inter-
connected by arcs attached to places which represent the channels through which entities A and B
exchange messages. The place/transition structure in each PNO represents the simple sequential
process executed by the entity to fulfill its role in the protocol. A single token in each place at the
top of each PNO (i.e., places Al and B6) indicates that each process will execute once during the
entire protocol.

The transitions in the PNO represent particular functions which the process may perform
while it executes. In this protocol the relationships are simple. For example, transition
SEND CHALLENGE consumes a plain (i.e., without colour) token from place Al. It deposits a
token with colour r in places A2 and A3. Transition RECEIVE RESPONSE has a more complex
definition: take a token with colour X (where X may be any colour) from A3; take a token from B8
and encrypt its value using the colour of the token in A0 as the key; if the result matches the colour
X, deposit an X-value token in A5 (accept); otherwise, deposit an X-value token in A4 (reject).

As illustrated in Figure 3, the model of entity A is extended to accommodate a second process
(A-2) which executes in parallel with the first (A-1); both share a common key, k. This new
process is identical to the process in entity B. It models a process in entity A which is set to
respond to an authentication challenge from any other entity. With this approach it is possible to
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add an arbitrary number of concurrent processes to each participant. Thus, even multiple-iteration
or parallel session attacks [13] may be analyzed using models constructed in this fashion.
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Figure 2. Petri net model of the one-way authentication protocol.

2.2 Petri Net Model of the Intruder

In a cryptographic protocol, an intruder is an entity with some degree of control of the traffic
-on the communication channels, and which attempts to subvert the objectives of the protocol. Such
- aftempts are termed attacks on the protocol. In the case of the one-way authentication protocol, a
~successful attack would mean convincing entity A (process A-1) that entity B was present during
the protocol execution when entity B never actually participated.

The intruder intercepts and stores all messages delivered to any channel. It may redirect,
pass, or block any of these messages. In addition, it may construct spurious messages from
captured and randomly generated values, and inject them into any channel.

In the Petri net model of the protocol, the intruder is represented by 2 PNO. The PNO has
ports which mirror the functions of the ports of the legitimate participants. In Figure 3, the port
SEND B CHALLENGE mirrors the function of port SEND CHALLENGE in entity A. The database in
which the intruder stores all captured and randomly generated values is represented by a set of
places, one place for each type of value, e.g., one place to store keys, and another to store
encrypted values. The values are stored permanently in the database. Therefore, only input arcs or
bi-directional arcs may be connected to these places. The remaining internals of the intruder PNO
consist of a network of directed arcs (and possibly extra transitions and places) which define the
relationships between the captured messages, the database, and the output messages.
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A few rules apply to the construction of the intruder model. An intruder port which captures

messages from a channel (input port) will have an arc directed to a place in the database. For
example, when the transition RECEIVE A CHALLENGE in Figure 3 fires, it removes a token from

place A2 and outputs a token to place I_R in the database.

An intruder port which injects messages into a channel (output port) will be connected to a
place in the database by a bi-directional arc. The same port is always connected to the channel place

via an inhibitor arc. The implication is that the model of the intruder will deliver messages singly to

the channel. The target entity must first remove a sent message from the channel before the intruder
injects another. In Figure 3, the transition SEND B CHALLENGE may fire only if the place I4 is
void of tokens. When firing, it checks, and returns, a token from place I_R, and outputs a token to
the place 14.
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Figure 3. Petri net model of the one-way authentication protocol and intruder.
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Random values for the generation of spurious messages are represented by the initial
distribution of tokens with different values in the database places. For instance, I_R={rl,r2},
I_K={k1,k2}, and I_ERK={erkl,erk2} would give two random values of each type which the
intruder would use to generate spurious messages.

2.3 State Analysis of the Petri Net Model

The state of the Petri net representation of the protocol is given by the distribution of tokens.
In Figure 3, the initial state of the system is given as: AO={k}, Al={1}, A6={1}, BO={k}, and
B6={1}. The value 1 denotes a single plain token. Tracing the states, through every possible
permutation of transition firings results in a state-reachability tree. The reachability analysis
involves examining the nodes of this tree, in particular the leaf nodes (i.e., the terminal states).

The process of traversing the reachability tree and gathering state information has been
automated. Prolog is used as the language for experimentation, but the program can be mapped to a
procedural language without too much effort. Each transition is specified by simple rule which
describes the state transformations. The tree is traversed in breadth-first fashion which allows
detection of duplicate nodes, and cuts the search effort dramatically. Each path is followed until a
reject or accept state is reached, i.e., where there is a token in A4 or A5, respectively.

The reachability tree for the specification in Figure 3 is relatively shallow, 17 nodes; a reject
or accept state is encountered after visiting 17 or fewer states. The number of unique states is 206,
and the program completes execution in a few seconds. The quantities used in the analysis of the
system are: the total number of terminal states, the number of accept states, and the number of
accept states in which A5=B9. The condition for the latter quantity is a consequence of the
objective of the one-way authentication protocol. A5=B9 indicates that the entity B did participate
in the message exchange sometime during the execution of the protocol.

Since the set of accept states in which A5=B9 is a subset of the total number of accept states,
it is necessary to show that the number of elements in each set is equal to determine that the
objective of the protocol has not been violated. Given that the search of the state-space is
exhaustive, the equality is also sufficient to claim that the protocol is secure under this analysis.
This is based on the assumption that the model of the intruder accurately and completely specifies
the capabilities of the true intruder.

In the case of Figure 3, the number of terminal nodes is 56, and the number accept states is
56. These numbers are equal, indicating that entity A never reaches a reject state. The number of
accept states in which A5=B9 is 40. This is not equal to the total number of accept states; therefore,
the paths leading to the 16 states in which A5#B9 allow the intruder to subvert the objective of the
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protocol. Examination of this set of states helps the designer determine the necessary protocol
modifications.

Table 1a. Results from executing the protocol vulnerable to reflection attack.

Case Number of Number of Number of Number of Time to
{R,K,ERK) unique terminal accept accept execute
states states states w/A5=B9

0 (0,0,0) 206 56 56 (7) 40 (5) 2 sec
1{0,0,1) 646 242 84 (7) 60 (5) 8 sec
2(0,1,0) 638 240 84 (7) 60 (5) 8 sec
3(0,1,1) 1114 334 112 (7) 80 (5) 19 sec
4 (1,0,0) 2035 560 252 (13) 153 (8) 43 sec
5(1,0,1) 5403 1641 369 (13) 225 (8) 242 sec
6 (1,1,0) 8634 2189 486 (13) 297 (8) 717 sec
7(1,1,1) 13563 2821 603 (13) 369 (8) 1840 sec
8 (0,0,2) 1125 335 112 (7) 80 (5) 20 sec
9 (0,2,0) 1106 332 112 (7) 80 (5) 20 sec
10 (2,0,0) 9256 2370 672 (19) 384 (11) 607 sec
11 (3,0,0) 28259 6878 1400 (25) 775 (14) 5311 sec

Note: the numbers in parentheses indicate the number of equivalence classes.

Table 1b. Results from the modified protocol which prevents the reflection attack.

Case Number of Number of Number of Number of Time to
{R.K,ERK) unigue terminal accept accept execute
states states states w/A5=B%

0 {(0,0,0) 242 72 36 (4) 36 (4) 3sec
1(0,0,1) 646 214 52 (4) 52 (4) 10 sec
2 {0,1,0) 638 212 52 (4) 52 (4) 10 sec
3(0,1,1) 1110 294 68 (4) 68 (4) 24 sec
4 (1,0,0) 2187 582 144 (7) 144 (7} 57 sec
5{1,0,1) 5445 1501 207 (7) 207 (7) 282 sec
6(1,1,0) 8658 2005 270 (7) 270 (7) 863 sec
7(1,1,1) 13585 2573 333 (7) 333 (7) 2230 sec
8 (0,0,2) 1121 295 68 (4) 68 (4) 24 sec
9 {0,2,0) 1102 292 68 (4) 68 (4) 24 sec
10 (2,0,0) 9694 2388 368 (10) 368 (10) 758 sec
11 (3,0,0) 29237 6876 750 (13) 750 (13) 6392 sec

Note: the numbers in parentheses indicate the number of equivalence classes.

The initial condition given in Figure 3 does not allow, however, for the existence of random
values from which the intruder would generate spurious messages. A more complete analysis
considers other cases with different initial conditions, adding one token at a time to each place in
the database in the intruder model. The tests conducted thus far have included eleven different
cases, and the results have been tabulated (see Table 1a). The most notable difference between
cases is that the number of states, and correspondingly execution time, increases quite rapidly.
Some measures have been taken to alleviate problems in this situation. By considering only a
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subset of the places in the Petri net model, it is possible to group the terminal states into
equivalence classes. In the tests, terminal states are considered to belong to the same class if they
have the same values in corresponding places, excluding places 12, I3, and I14. The result is that
there are fewer terminal states to consider, and that growth in the number of these classes of
terminal states is stemmed. This provides hope that it may be proven that the intruder makes no
more progress by increasing the number of spurious messages generated.

2.4 The Reflection Attack and Its Prevention

Table 2 lists all the classes of termirial states for a single case from the test set. The terminal
states for which place B9 is empty are cause for concern. They indicate a successful reflection
attack. The intruder is able to capture the challenge r from process A-1, redirect it to process A-2 to
obtain a suitable encrypted value which it then feeds back to process A-1. This forces A-1 to accept
but entity B never participated in the message exchange. The shaded rows in Table 2 are the
suspect states which are eliminated by applying a simple modification to the protocol.
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Figure 4. Petri net model of the modified one-way authentication protocol.
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In the modified protocol given in Figure 4, the SEND RESPONSE function encrypts the entity
identification (ID) along with the value of the challenge. This simple modification prevents the
intruder from issuing a successful reflection attack. The results from Table 1a are updated to reflect
the new protocol, and given in Table 1b.

Table 2. Results from the modified protocol which prevents the reflection attack.
A8 A7 A8 A9{B6 B7 B8 B9iR K IERK

S1 r roir e(r,k),e(r,k)
S2 efrk) r roir K

Note: for all states listed above AO=[k}; A1=A2=A3=A4=[]; A5=[r]; BO=[K].

3 Specifications for Other Protocols
3.1 Handset Authentication Protocol Used for CT2 and CT2Plus

The handset authentication protocol (a one-way authentication protocol) used in the CT2 and
CT2Plus wireless communication protocols is specified by the Petri net in Figure 5; the network
authentication protocol described in [18] is not considered here. Entities A and C represent distinct
telepoint bases in different locations. Entity B is the handset attempting to authenticate itself to
telepoint base #1 (entity A). The intruder is assumed to have same capabilities it had in the model
of the simple one-way authentication protocol. In particular, in this wireless scenario, it may be
able to intercept the signals (i.e., by jamming), and transmit its own. Note that the configuration
used to analyze the protocol in section 2 is not applicable here, because the telepoint bases cannot
execute the process used in the handset.

In Figure 5, labels in italics are given to relate the values back to the specification given in the
CT2Plus documentation [17]. Some transitions also have additional labels which match the names
of functions in the documentation. For example, the transition SEND CHALLENGE in the telepoint
base matches the functions RNG (Random Number Generator), and F (the encryption function).
The function £, which corresponds to the telepoint base transition RECEIVE ID, is described as
proprietary to individual telepoint operators [16].

The goal of this protocol is to allow the handset to prove its identity to a given telepoint base.
Each handset is assigned a unique identifier (id), and a PIN (the result of one-way function
operating on the id). The handset initiates the authentication protocol by transmitting its identifier to
a designated telepoint base. The base passes the received id through function f to determine the
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expected PIN of the handset, and responds by sending a challenge (a random value). The handset
returns its PIN encrypted under the value of the challenge. If the telepoint base determines that the
returned value matches the value of the expected PIN encrypted under the challenge by the base

itself, the identity of the handset is accepted.

Two results follow from preliminary analysis of the protocol. First, it is found that the
number of accept states in which AS5#B6 is zero. This demonstrates that telepoint base #1 (entity
A) will not accept if entity B does not produce the expected response. The latter statement is a
necessary condition to meet the goal of the protocol. Second, the discovery that the number of
terminal states in which C5 has a token is 80 (i.e., non-zero), uncovers a well known attack on all
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Figure 5. Petri net model of the handset authentication protocol used in CT2 and CT2Plus.
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protocols in which the intruder has control of the communication channels. In this attack, the
intruder simply redirects messages from entity B to entity C rather than A, and the replies from C
back to B. It forces the wrong telepoint base to authenticate B. Without additional precautions, the
intruder may be able to continue accessing services under the identity of entity B through telepoint
base #2 (entity C). Subsequent steps in CT2 and CT2Plus, however, can make this attack
infeasible. Table 3 summaries the results.

Table 3. Results from the modified protocol which prevenis the reflection attack.

Case # unique # terminal # accept # accept # terminal
(R,K,ERK} states states states w/A5-B6 w/C5: @
0 (0,0,0) 1650 384 224 0 80

4 Conclusions

Coloured Petri nets have proven to be effective for both the specification and our iterative
analysis and design approach for cryptographic protocols. Using a common model throughout
contributes to reliable, accurate results. Rules for the construction of an intruder model have been
given. By inserting this intruder into the protocol specification, forward state analysis exhaustively
checks all possible intruder actions. Software developed to automate the analysis has made it
feasible to analyze a variety of protocols.

With Petri Net Objects, multiple-iteration and parallel session attacks [13] can now be
modeled. A previously known reflection attack on the simple one-way authentication protocol was
given by our analysis. Further analysis showed that a slight protocol modification eliminated the
threat of this attack. Another Petri net model captured a common attack on two-party protocols.

5 Future Work

Further study of the implications of the terminal states with respect to the security properties
and objectives of a cryptographic protocol is necessary. This will allow further generalization of
our approach, and facilitate the development of a more flexible analysis tool. It is anticipated that
we will move from Prolog to an object-oriented language such as C-++ for the tool since the PNO
model lends itself to an object-oriented implementation.

More protocols will be analyzed with particular attention to wireless communication systems.
Cellular and cordless applications are particularly vulnerable to intruder attacks, and represent an
area of considerable concern. The objectives of the protocols to be examined will encompass
authentication and privacy.
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Abstract

Most authentication protocols in distribuied systems
achieve identification and key distributions on the
belief that the use of & uncertified key, i.e. the key
whose freshness and authenticity cennot be imme-
diately verified by its receiving principal while being
received, should be avoided during the midway of an
authentication process. In this paper we claim thal
using a uncertified key prudently cen give perfor-
mance advaniages and not necessarily reduces the
security of authentication protocols, es long as the
validity of the key can be verified af the end of an
authentication process. A nonce-besed authentice-
tion protocol using uncertified keys is proposed. Iis
total number of messages is shown to be the min-
imal of all authentication protocels with the same
formalized goals of authentication. The properties
which make the protocol optimal in {erms of mes-
sage complexily are elaborated, and a formal logical
analysis to the protocol is performed. The protocol
is ertended o prevent the session key compromise
problem and to support repeated authenticetion, in
a more secure and flexible way without losing ils
optimality.

1 Introduction

Authentication in essence is a process of verify-
ing the authenticity of one’s claim about its iden-
tity. It is one of the most important aspects of
computer security, since other security services such
as authorization, accounting, and auditing are all
based upon it. In a distributed computing environ-
ment with machines connected by vulnerable net-
work links, any two principals on different machines

*This research is partially supported by U.S. Arrr;y under
contract DASG60-94-C-0076.
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need to authenticate each other first on communi-
cation initiation such that an intruder cannot im-
personate a principal to the other. Furthermore,
distributed applications frequently require that the
messages transmitted over the network be confiden-
tial only to the communicating peers {e.g. on-line
credit card payment). Since encryption is currently
the main technique to achieve this requirement, at
least a session key needs to be distributed first be-
tween two communicating principals before a ses-
sion of confidential data transmission between them
can initiate. This session key is also used to provide
messege origin authentication during data commu-
nication following an authentication process. That
is, any message encrypted with the session key af-
ter authentication is believed to originate from the
peer principal who holds the session key. Thus, the
distribution of a session key is often carried out con-
currently with the authentication process.

In general, authentication protocols for dis-
tributed systems can be divided into two cate-
gories depending upon how the freshness of key-
distribution messages is determined. One category
of protocols uses nonces and challenge/response ex-
changes to verify if the response to a key distribu-
tion request is fresh or not. Since replay attacks
can be effectively prevented by the use of nonces,
most proposed authentication protocols are nonce-
based [8, 11, 12, 13, 14, 17]. The other category
of protocols uses timestamps to ensure the fresh-
ness of messages and must assume that all machines
are properly clock-synchronized [9]. The number
of messages required by timestamp-based protocols
can be reduced since no round-trip traffic is required
to guarantee message freshness as in the case of
nonce-based protocols. Kerberos [15] and Kryp-
toKnight {10} are the most well-know authentica-
tion services based on timestamps and nonces, re-
spectively. Due to the possible imperfection of clock
synchronization mechanisms, timestamp-based pro-




tocols are vulnerable to both conventional copy-
and-replay and suppress-and-play attacks discussed
by Gong [6]. Therefore, we will only address nonce-
based protocols in the following.

After the initial authentication is established and
a communication session has been completed by a
pair of principals, there may be needs for future
communication sessions. If it is believed that the
session key has not been compromised, authenti-
cation for subsequent sessions can be accomplished
by using the idea of repeated authentication, with-
out going through the authentication server. Effec-
tively, the load of the authentication server for key
generation and distribution can be reduced. The
KSL protocol proposed by Kehne, Schonwalder, and
Langendorfer [8] is an example of nonce-based pro-
tocols for both initial and repeated authentications.
Its initial authentication requires only five messages
and the subsequent repeated authentications re-
quire three messages for each session. Later, Neu-
man and Stubblebine [13] presented another nonce-
based protocol which requires only four messages
for the initial authentication and still three mes-
sages for each subseguent authentication. However,
it offers better protocol efficiency by sacrificing the
security of the protocol, in that a weaker set of for-
malized goals [3] is achieved than that achieved by
the KSL protocol. More specifically, the Neuman-
Stubblebine protocol lacks a final belief reached by
the KSL protocol: principal 4 is convinced that
his communicating peer, principal B, also trusts
the session key to be used between them [13, 16].
The primary objective of the paper is to propose an
new authentication protocol that achieves both the
lower message overhead of the Neuman-Stubblebine
protocol and the stronger authentication goals of
the KSL protocol. The proposed protocol is further
extended to prevent the compromise of session keys,
an issue not addressed by either protocol. Support
of repeated authentication is then incorporated to
the protocol without losing its performance advan-
tages.

2 The Proposed Nonce-based Proto-
col

The assumptions of the environment where the
protocol is to be operated and of possible attacks are
basically the same as those assumed by most exist-
ing authentication protocols. Two principals, A and
B, wishing to authenticate each other and to obtain
a shared session key for subsequent communication.
A trusted authentication server S shares a master
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Message 2

Message 3

Message 4

Figure 1: A nonce-based authentication protocol

key with each principal and is capable of produc-
ing good session keys and sending them securely on
the requests of principals. No clock synchronization
among machines is assumed, so nonce-based chal-
lenge/response exchanges are used to guarantee the
freshness of messages.

The message flow of the protocol is shown in Fig-
ure I and the contents of each message is as follows:

Messagel A—S: A, B,N,

Message 2 S—B: {4,B,N, Ka}xk..,
{A1 B, Na: Kab}Ka,.

Message 3 B — A: {A,B,N,;, Kul}x,,,
{NG}Keb:Nb

Message4 A—B: {Np}x,,

Principal A initiates the authentication by sending
S a plaintext message containing the identities of
itself and the desired communicating peer B, and a
nonce N, (message 1). After S receives this mes-
sage, he generates a session key K, and appends
it to the identities of both parties and nonce N,
to form two credentials, one for A and the other for
B. Both credentials have exactly the same contents,
but one is encrypted with A’s master key K,,, and
the other is encrypted with B’s master key Kp.. S
sends both credentials to B (message 2), who then
decrypts the second one and finds out that A wants
to authenticate with B mutually, N, is the nonce
issued by A, and K, is generated by S to be used
as a session key for future communication between
A and B. B then forwards the first credential from
S to A, and also sends an encrypted N, with K,
and another nonce N (message 3}. Upon receiving
them, A decrypts the credential to get K, and ver-
ifies its freshness by checking the presence of N;. A
also authenticates B by decrypting the encrypted
part with K, and comparing the result with N,.
If they match, A encrypts N with K,; and sends
it back to B (massage 4) to prove its identity to B.

In the.protocol, A verifies the identity of B by
checking whether the peer principal is able fo en-
crypt nonce N, with session key K. This verifi-




cation is based upon two beliefs of A. The first one
is that on the request of authentication (message
1), S will issue a credential containing N, and Kgp
and encrypted with K3, for principal B (message 2).
The second belief of 4 is that only S and B share
master key Kjs, so no other principal except B is
able to send the encrypted N, with K, (message
3). Therefore, the protocol prevents against im-
personation of B by the assumptions of the correct
behavior of the authentication server and of the se-
crecy of master keys. Furthermore, since nonce N,
is used only for the current session, replay of old
messages issued by either S or B will be detected.

On the other side, B verifies the identity of A
by the use of uncertified session keys. When B re-
ceives message 2, he has no way to tell whether the
message is either a replay or an impersonation at-
tempt initiated by a malicious principal C. B only
presumes that some principal who claims to be A
wants to authenticate each other with hirnself for
the current session. To verify message 2 is authen-
tic and fresh, B needs to use (and temporarily be-
lieves) the uncertified session key Kgp to encrypt
N, and also sends its own nonce N in the clear.
If A returns message 4 as expected, B believes in
the authenticity and freshness of Kgp. If message 2
is only a replay (either copy-and-replay or suppress-
and-play), .4 will detect it and thus will not respond
with 2 normal message 4 (instead, A probably sends
back an error message to inform B that a replay is
possibly occurring), so B knows K, is not fresh.
If principal C' wants to impersonate A and initi-
ates an authentication process, he is incapable of
producing message 4 since Kgy is confidential to C.
Therefore, B can verify its temporal belief on the
authenticity and freshness of message 2 by a nonce
challenge/response exchange with A. Note that B
authenticates A basing upon the beliefs similar to
those on which A bases to authenticate B.

3 A Formal Protocol Analysis Using
BAN Logic

To describe the protocol formally, each message
of the protocol is presented in an idealized form:

{N.,, A% B}k
(N, A%
{NaiA ‘_a}b B}Kas:
{NG»A t B}Keb
{Ny, A% B},

Message 2 S — B:

as?

B}Kbr

5t

Message 3 B — A:

X

Message 4 A — B:
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The first message is omitted since it is in the clear
and thus provides no guarantee about the properties
of the protocol. The result is as if S acted sponta-
neously. Message 2 expresses that both credentials
from S contain nonce N, and session key K3 to be
shared between A and B. The first component of
message 3 indicates that B faithfully forwards the
first component of message 2 to A, and the second
component means that B temporarily trusts Kgs,
and uses it to encrypt N, to imply to A that it
would like to share K, with A upon subsequent
verification. The last message indicates that A has
verified the freshness of K3, and responds to B’s
challenge by encrypting Ny with K.

The initial assumptions of the protocol in BAN
Logic notation are:

lAEA%s
9.BEB% S
3.5EAty
45EB® s
5.SEAS B

Key

1LAES B ASEB)
9.BE (SR AL B)

1A E }(Na)
2.B = §(Ns)
$BEHAS B)

Server

Freshness

The first four assumptions in the Key group specify
the initial beliefs on the secrecy of master keys be-
tween the principals and the authentication server.
The fifth denotes that session key K,y can only
be generated by S. The next group {Server) in-
dicates the trusts that A and B have on the server
to generate a good session key. The last group of
assumptions is about the freshness of nonces and
keys. The first two indicate that each principal can
issue a nonce and trusts only the nonce issued by
himself. The last one is needed by B for attempting
to use a uncertified key. As pointed out in the BAN
Logic paper about the Needham-Schroeder protocol
{3], the last assumption is not as obvious as others
initially, but can be verified later by the protocol
itself.

The formal proof of the protocol using the pos-
tulates of BAN Logic is presented as follow. First,
A sends S a cleartext message containing a nonce.
S then sends message 2 to B, that is:

B a{N,, A’ B}k.,,{N.,, A% B}k,
B can decrypt the second component of this mes-




sage with K;,. Applying the message-meaning rule
to it, we can deduce:

BESk (AL B)
With the application of the nonce-verification rule
to the above assertion and the assumption B E

§(A & B), we obtain:
BESEA'S
With the jurisdiction rule, we immediately get:
BeA®®B
B, temporarily trusting K, generates message 3
and sends it to A, thus:

Aa{Ne, A"% B}, {No, A"® Blx,,
A can decrypt the first component encrypted with
K,,. Since S knows N, to be fresh, we can apply
the message-meaning rule, leading to:
AESK (A% B)
Applying the nonce-verification and jurisdiction
rules in a way similar to the above described, we
obtain:
AEA
After getting K3, A uses it to decrypt the second
component of message 3 and checks the presence of
Ng. Therefore, the message-meaning rule applies:
AEBR A B
With the nonce-jurisdiction rule, we can obtain:
AEBEA%B
Then A replies B with message 4. B deduces from
the message that A believes in the session key. With
an analysis similar to the one applied to the second
component of message 3, we can get:
BEAEASSB
In conclusion, the final beliefs of both principals
achieved by this protocol are:

Kap
-

Kap
A d

Ae4a%e B BeaXep
AEBEA™ B BEAEASB

which are exactly the formalized goals of authen-
tication for all authentication protocols as recom-
mended by the authors of BAN Logic. It should be
noticed that these goals can be achieved with only
four messages.

4 Countering Session Key Compro-
mises

Like the original Needham-Schroeder protocol
[11], the final beliefs of our protocol are reached as-
suming that B accepts the session key as new upon
receiving it, though the assumption can be verified
as the protocol proceeds. Not surprisingly, our pro-
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tocol is also vulnerable to the session key compro-
mise attack as pointed out by Denning and Sacco [4]
to the original Needham-Schroeder protocol. That
is, if an intruder € compromised an old session key
and copied messages 2 and 4 of the protocol run
in which the session key was used, he can pretend
to B as if he were A . B is incapable, by the pro-
tocol itself, of knowing whether a session key has
been compromised or not. Note that message 4 of
the protocol only verifies to B whether the session
key is a replay or the result of an impersonation
attempt, if the key s not compromised.

This possible attack can be prevented by includ-
ing timestamps in messages as suggested by Den-
ning and Sacco [4], which requires clock synchro-
nization of all the machines. Alternatively, the so-
lution proposed by Needham and Schroeder [12] for
their original protocol requires B to generate its
own nonce initially and S to include this nonce in
the message containing the session key. This unfor-
tunately leads to at least two more messages in a
protocol run. The following describes an enhance-
ment of our proposed protocol to counter this im-
personation attack, requiring neither time synchro-
nization nor additional messages.

Without taking consideration of the robustness
of cryptographic algorithms and the possibility of
brute-force cryptanalysis, session keys are more eas-
ier to be compromised than master keys because of
operation reasons. Session keys are used over a rel-
atively longer time period and are usually stored
in (probably insecure} local memory or registers for
efficient encryption and decryption for the entire
communication session. In general, the attacks to
session keys can be effectively prevented by rais-
ing the quality of session keys (e.g. using longer
keys) or improving the protocol itself to reduce the
vulnerability resulting from insecure local memory
and communication links. The strategy we take is
to have S issue another key K, along with Kz, to
the principals in the protocol. K is used just for the
current authentication session and is discarded im-
mediately after authentication. The improved pro-
tocol becomes:

Message 1l A—S: A B N,

Message 2 S — B: {A,B, Ny Ka, Ki}k.,,
{A1 B} NGJKﬂb}Kt}Kb;

Message 3 B—A: {AJ B; NaaKGb;Kt}Kul
{Na, Koy} k., Ny

Message 4 A— B: {Ny, Kulrx,

K, is issued by $ and included in both credentials _
of message 2. It is used by B to encrypt N, and
Kgp to tell A that B temporarily trusts both keys




Ko and K;. A verifies B’s temporal trusts on these
keys by checking the presence of N, within the first
credential in message 3, and sends back to B the
encrypted N, and K, with key K,;. After K, is
used by A for encrypting message 4, it is removed
right away from the local memory of A’s machine.
After message 4 is received and verified, B also im-
mediately removes K; from its local memory.

The use of K; is exclusively for authentication
only. A new K; is generated by the authentication
server S for each initial mutual authentication. An
intruder may have compromised K,; and replays
old authentication messages, but will fail to imper-
sonate A in a run of this improved protocol, since he
is unable to encrypt message 4 with the new K,. K,
is much more difficult to break than K, because it
is used by (and meaningful to) A and B only once,
for a very brief period. Another advantage of this
improved protocol is that the same K can be used
for multiple sessions, since each session initiation is
checked by a different K.

5 Repeated Authentication

Authentication servers heavily utilized may be-
come a performance and security bottleneck in the
system. If a system operates in a relatively benign
environment and the session keys distributed pos-
sess pretty good quality, it is possible to reduce the
workload of authentication servers and the corre-
sponding communication overhead by repeating the
use of a previous session key for subsequent authen-
tication sessions. Protocols for repeated authentica-
tion usually distribute some credentials (which are
often called #ickets and will be referred to as sesston-
key certificates in this paper) to principals during
an initial authentication session. In a subsequent
authentication session, a session-key certificate is
used to securely convey a session key distributed
earlier to the principal who can recognize that cer-
tificate, without the need to contact the authenti-
cation server again. In the following we show how
our protocol can be extended to deal with repeated
authentication, in a more secure and symmetrical
way than the KSL and Neuman-Stubblebine proto-
cols.

Initial authentication:
certificates

Messages 3 and 4 in the initial authentication
protocol are further extended to include session-key
certificates for repeated authentication.

getting session-key
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Message 1 A—S: A,B,N,

Message 2 S — B: {A,B,N,, K, Ki}k.,,
{A:B;Na:Kab,Kt}Kb,

Message 3 B —A: {A,B,Ns Kap, Ki}k.,,
{NG: Kab}K”NbJ
{A:B,TbsKGb}Kba

Message 4 A — B: {Ny, Kaplx,,

{Ar B: Tm Kﬂb}K“

In message 3, B also sends A a session-key certifi-
cate which contains the identities of both 4 and B,
session key K3, and a generalized timestamp T,
suggested by the KSL profocol, and is encrypted
with the master key of B. After checking the valid-
ity of message 3, A also returns B with a session-key
certificate which contains similar information but is
encrypted with A’s own master key. Since a session-
key certificate is encrypted with the master key of
its issuer, it is only recognizable to the issuer. The
purpose of a generalized timestamp is to limit the
validity of a certificate, corresponding to the local

teme of the issuer. Therefore, the assumption of

global clock synchronization is not required by us-
ing timestamps this way.

Subsequent authentication: exchanging the
certificates

After the initial authentication, A and B hold
session-key certificates for each other. When the
communication session between A and B following
the initial authentication is completed, K, ; is re-
moved from the local memory of both principals’
machines. Since the session key does not need to
be kept in the memory of principal A’s machine af-
ter an initial communication session as in the KSL
and Neuman-Stubblebine protocols, this method of
protecting session keys is more secure than those
protocols. It also distributes the risk of compromis-
ing all the session keys of A at the same time if 4 is
communicating with multiple peer principals, since
each session-key certificate of A is held by a distinct
principal. When A wants to repeat an authentica-
tion with B next time, he initiates a protocol as
follows:

Message I’ A— B: {4,B,Ts, Kat}x:., N,

Message 22 B — A: {A,B,Ts, Kas}x,,,
{Na}Konr Ny

Message 3¥ A— B: {N|,N.}k..

A sends the session-key certificate previously issued
by B and nonce N! in message 1’. After verify-
ing that the certificate is still fresh, B temporarily
trusts session key Ko and uses it to encrypt N.. B
then sends back the matching session-key certificate




issued earlier by A, the encrypted N., and a new
nonce Ny (message 2’). The last message shows that
A has already trusted K;; and verified the identity
of B. Upon receiving it, B verifies its trust on Kgp
and the identity of A.

The subsequent authentication protocol is actu-
ally similar in both spirit and style to the inmitial
authentication protocol. The difference between
them is that in the former two principals exchanges
session-key certificates originally generated by each
other, and in the latter A initiates S to generate
a session key for both principals and requires B to
forward the session key to himself. It should be no-
ticed that possession of a session-key certificate only
means holding some key information for ancther
principal. It does not provide any authentication
guarantee. The capability of recognizing (decrypt-
ing) the certificate and then encrypting a nonce
with the session key is still needed to verify the iden-
tity of a principal. Note also that even in the ini-
tial authentication protocol B sends a session-key
certificate to A (message 3) prior to verifying the
session key, he will not accept the session-key cer-
tificate from A as valid if the nonce response from
A is different from the one expected.

In addition to protecting the session keys more
securely, another advantage of our repeated au-
thentication protocol over the KSL and Neuman-
Stubblebine protocols is that either A or B can ini-
tiate a subsequent authentication. The subsequent
authentication protocol initiated by B is symmet-
rical to the one shown above. Both the KSL and
Neuman-Stubblebine protocols presume the role of
A as a client and the role of B as a server in an ini-
tial authentication, and their roles will not change
during subsequent authentications. However, our
protocol does not assume the role of any princi-
pal, rendering more flexibility on who can initi-
ate a subsequent authentication. In modern client-
server type distributed systems, principal B, being
a server of client A in the current communication
session, eould be a client of A as a server in the next
session. Due to these reasons, our authentication
protocol is more adaptive to another distributed
system paradigm, the peer-to-peer communication
style.

Preventing oracle session attacks

Encrypting N/ in the last message of a re-
peated authentication provides an association be-
tween both message 2’ and 3’ in the same protocol
run. Its main purpose is to prevent the oracle ses-
sion attack [2], in which an intruder starts two sep-
arate authentication sessions with principals A and
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Figure 2: An oracle session attack by an intruder C

B such that he can utilize the messages in one ses-
sion to impersonate a principal successfully in the
other session.

Let’s demonstrate an attack scenario with a ver-
sion of our repeated authentication protocol with-
out encrypting N/ in message 3’ (Figure 2):

(1) C—B: {A:B;Tb;Kab}KbnNé

(2) B—A: {4 BT Kalk. {N ]}k N
intercepted by C

3) C—A: {A BT Kalxk,., N}

(4) A—B: {AB,T,Ka}x, {Nj}xu, N,
intercepted by C

(6) C—B: {N}x.,

An intruder C, who has copied a session-key cer-
tificate {4, B, T}, K41} x,, during an initial anthen-
tication or an earlier repeated authentication ses-
sion, pretends to be A by sending B that certificate
and nonce N/. B thinks that this authentication
request was from A and responds with A’s session-
key certificate {A,B,T,, Ko}x.,, nonce response
{N/}k.,, and a new nonce N{. All are intercepted
by C. Then C pretends to be B by sending A (the
oracle) the certificate and nonce N} that he just
obtained from B. A also thinks that this authenti-
cation request was from B and responds with B’s
session-key certificate {4, B, T}, K3}k, , DODCE Te-
sponse { N} } k., , and a new nonce N;. This message
again is intercepted by C. € thus can impersonate
A successfully by just passing the nonce response
{N{}k,, to B. Although K,; is not compromised,
A’s privileges still could be abused by C by just
replaying some encrypted messages {also encrypted
with K, intercepted in an earlier communication
session).

This type of attacks can succeed if there is no ex-
plicit association between messages 2° and 3°. With
N! encrypted in both messages, it is ensured that
message 3’ obtained by B belongs to the same pro-
tocol run as message 2” he has sent. This technique
is a realization of the suggestion by some authenti-
cation protocol researchers [1, 5] that messages in a




particular protocol run should be logically linked in
a manner such that the re-use of messages from a
previous run or the introduction of messages from
a concurrent run can be detected.

Logical analysis and timestamp

Different from the initial authentication proto-
col, a principal running the protocol for subsequent
authentication checks the freshness of a session key
by using the generalized timestamp associated with
it. However, even with a generalized timestamp, a
principal still cannot tell whether or not the send-
ing of a session-key certificate by the peer principal
is a replay or an impersonation attempt, if the life-
time of the certificate has not ended yet. Using
generalized timestamps this way actually does not
guarantee message freshness as effective as provided
by nonce challenges. A principal still needs to verify
that an authentication message is fresh by a nonce
handshaking with his communicating peer.

The generalized timestamp that represents the
lifetime of a session-key is solely determined by the
issuer of the certificate. This autonomy may result
in a pair of related certificates with very different
lifetimes. This timestamp discrepancy problem can
be easily solved by including some timestamp infor-
mation in the second component (encrypted with
K,;) of message 3 in the initial authentication pro-
tocol. When the receiver principal obtains this in-
formation, he can refer to it for determining the
timestamp parameters of the session-key certificate
to be issued by himself in message 4. Because no
full negotiation between both principals about the
timestamps is performed (actually not a necessity)
and it is meaningless for a principal to issue a certifi-
cate which lives longer than that issued by his peer
principal, it tends to make the certificate issued by
the principal sending message 4 expire earlier.

The extended protocol has also been analyzed by
using BAN logic, and the four formalized goals of
authentication can also be achieved [7].

6 Conclusion

The paper presents a new nonce-based authen-
tication protocol which makes use of uncertified
keys to reduce its message complexity. The pro-
tocol is formally shown to achieve the authentica-
tion goals as recommended by BAN. The messages
required for the initial authentication is four and
three for each subsequent repeated authentication.
The protocol is improved to become more robust
against impersonation attacks in later authentica-
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tions even when session keys are compromised. It is
achieved by using an additional cne-time key with-
out increasing the number of messages during initial
authentication. The protocol is further extended
for repeated authentication. The use of symmet-
rical storing of session-key certificates is more se-
cure and adaptive to the peer-to-peer communica-
tion paradigm in distributed systems. Some imple-
mentation issues are under studies.

References

[1] Martin Abadi and Roger Needham, Prudent En-
gineering Practice for Cryplographic Protocols,
DEC SRC Research Report 125, June 1994.

[2] Ray Bird, et al., “Systematic Design of a Family

of Attack-Resistant Authentication Protocols,”

IEEE Journal on Selecied Areas in Communi-

cations, Vol. 11, No. 5, June 1993, pp. 679 -

693.

[3] Michael Burrows, et al., A Logic of Authentica-

tion, DEC SRC Research Report 39, February

1990.

[4] Dorothy E. Denning and Giovanni Maria Sacco,

“Timestamps in Key Distribution Protocols,”

Commaunications of the ACM, Vol. 24, No. §,

August 1981, pp. 533 - 536.

[5] Whitfield Diffie, et al., “Authentication and Au-
thenticated Key Exchanges,” Design, Codes end
Cryptography, Vol. 2, No. 2, June 1992, pp. 107
- 125,

Li Gong, “A Security Risk of Depending on Syn-
chronized Clocks,” Operating Systems Review,
Vol. 26, No. 1, January 1992, pp. 49 — 53.

[7] I-Lung Kao and Randy Chow, “An Efficient and

Secure Authentication Protocol Using Uncer-
tified Keys,” Technical Report UF-CIS-TR95-
008, University of Florida, February, 1995,

[8] A. Kehne, et al.,, “A Nonce-Based Protocol for
Multiple Authentication,” Operafing Systems
Review, Vol. 26, No. 4, October 1992, pp. 84
- 89.

[9] Barbara Liskov, “Practical Uses of Synchronized
Clocks in Distributed Systems,” Proceedings of
the tenth Annual ACM Symposium on Princi-
ples of Distributed Computing, Montreal, Que-
bec, Canada, August 1991, pp. 1 - 9.




[10] Refik Molva, et al., “KryptoKnight Authen-
tication and Key Distribution System,” Pro-
ceedings of 1992 European Symposium on Re-
search in Compuier Security, Toulouse, France,
November 1992.

[11] Roger M. Needham and Michael D. Schroeder,
“Using Encryption for Authentication in Large
Network of Computers,” Communications of the
ACM, Vol. 21, No. 12, December 1978, pp. 993
- 999.

[12] Roger M. Needham and Michael D. Schroeder,
“Authentication Revisited,” Operating Systems
Review, Vol. 21, No. 1, Janunary 1987, p. 7.

[13] B. Clifford Neuman and Stuart G. Stubblebine,
“A Note on the Use of Timestamps as Nonces,”
Operating Systems Review, Vol. 27, No. 2, April
1993, pp. 10 - 14.

[14] Dave Otway and Owen Rees, “Efficient and
Timely Mutual Authentication,” Operating Sys-
tems Review, Vol. 21, No. 1, January 1987, pp.
8 - 10.

[15] J. G. Steiner, et al., “Kerberos: an Authentica-
tion Service for Open Network Systems,” Pro-
ceedings of the Winter 1988 Useniz Conferences,
Dallas, Texas, February 1988, pp. 191 - 201.

[16] Paul Syverson, “On Key Distribution Proto-
cols for Repeated Authentication,” Operating
Systems Review, Vol. 27, No. 4, October 1993,
pp. 24 - 30.

[17) Raphael Yahalom, appeared in A Logic of Au-
thentication, DEC SRC Research Report 39,
February 1990.

56




