Software performance of
encryption algorithms and hash functions

Bart Preneel*

Katholieke Universiteit Leuven, ESAT-COSIC,
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium
bart.preneel@esat.kuleuven.ac.be

Abstract

We examine the factors that influence the performance of crypto-
graphic software. Two important elements are the high level design
decisions and the optimal use of registers and cache memory. We also
give performance numbers for a set of selected algorithms.

1 Introduction

An increasing number of software applications makes use of cryptographic
algorithms. An important constraint is that the performance of the ap-
plication should be influenced as little as possible by the introduction of
cryptography. Two cryptographic primitives are required for high speed
data processing, namely encryption algorithms and cryptographic hash func-
tions. The first class is mainly used for confidentiality protection, while hash
function are intended for information integrity. Because of its slow perfor-
mance, asymmetric cryptography is not a viable alternative for symmetric
algorithms for these applications.

Since the mid seventies the Data Encryption Standard (DES) has been a
worldwide de facto standard, which was used for both confidentiality and au-
thenticity; very little alternatives were available. During the last five years,
an increasing number of symmetric algorithms has been proposed. One goal

*N.F.W.O. postdoctoral researcher, sponsored by the National Fund for Scientific Re-
search (Belgium).

89

of these new algorithms is to take advantage of advances in general purpose
processors to achieve a better performance in software and/or hardware.
One should keep in mind that DES was designed taking into account hard-
ware constraints of the mid seventies (the total size of the S-boxes is only
256 bytes). Moreover, researchers want to explore new alternatives based
on open design criteria (the design criteria of DES were never published).
An additional reason for the replacement of DES is its short key (56 bits),
which makes it too vulnerable to exhaustive search [29]. This can however be
solved easily by using triple DES, at the cost of a reduced performance. An
important factor in the development of new algorithms is the recent progress
in cryptanalysis (such as differential [3] and linear cryptanalysis [15]), which
has brought new insights in the development of cryptographic algorithms
and has made their design more of a science than an art. Furthermore, this
has stimulated research on building blocks such as S-boxes.

The analysis of the performance of cryptographic algorithms is closely
related to their security: high performance applications require an optimal
trade-off between security and speed. In order to avoid the discussion of
specific details of the large number of algorithms available, we emphasize the
influence of high level design decisions and of the choice of the elementary
building blocks on performance.

In this extended abstract, we will use the following examples of symmet-
ric algorithms:

block ciphers: DES [8], FEAL [18], IDEA [13], Khufu [17], LOKI [3],
Blowfish [28], 3-WAY [6], SAFER [14], CAST [1, 11], RC5 [24].
stream ciphers: RC4 (proprietary), SEAL [27].

hash functions: MDC-2 [4], Snefru [16], MD2 [12], MD4 [22], MD5 [23],
SHA [9, 10], RIPEMD [20].

While this collection contains the most popular algorithms, a selection of
newer algorithms has been included as well.

2 Performance

Optimizing the performance of software and hardware is quite different. Fast
hardware relies on parallelism and pipelining, while for software the access
to the memory is a key to fast performance: the designer will try to minimize
access to slow memory, and to stay as much “on chip” (registers and cache
memory). This aspect become more and more important as the access time

20

to the memory seems to decrease more slowly than the cycle time of the
processors. This suggests that faster cryptographic primitives will make use
of logic and arithmetic operations available on a standard processor and of
relatively small S-boxes (a few Kbyte). The advantage of S-boxes is that
they can yield a strong nonlinear relation between input and output. S-
boxes with 8 input bits and 32 output bits seem to be particularly suited
for the current 32-bit architectures. Other less important aspects which
influence software performance are word size, byte ordering, and carries,
which tends to be processor dependent. Recent computer architectures such
as the Pentium will also allow for parallel execution, and one can anticipate
that the importance of parallelism in software will increase.

The reader will probably be quite well aware that there exists no such
thing as the “software performance” of a given algorithm, even if figures are
given for a specific processor. The key is again the use of memory: some mea-
surements are obtained while repeatedly processing the same block, which
will have only a very distant relation to the performance in a practical ap-
plication where data are to be read from disk. The behavior of the cache
memory is an essential factor here. On the other hand, one wants to mea-
sure the performance of the algorithm rather than of the computer. Other
factors which can be very important include:

e equivalent representations and the use of tables: this can yield signif-
icant speed-ups, mainly for algorithms which are not designed specif-
ically for software. A widely used ‘trick’ is to rewrite the code for
a different key, but this involves some practical problems and some
security risks;

¢ quality of the compiler: for high level languages, good compilers (with
the right optimizations activated) can produce code which is almost an
order of magnitude faster; hand coded assembly language sometimes
results in significant improvements by using processor instructions such
as rotate which are not implemented in languages such as C, and by
optimizing the use of registers.

One can ask the question whether one should try to optimize the design
towards a single processor: designing and reviewing a cryptographic algo-
rithm will take several years, and by that time the processor will probably
be outdated. But, most processors are downward compatible, and if one
tunes an algorithm to a recent processor without exploiting particular fea-
tures (such as the availability of certain carries), it is very likely to achieve

91

a high speed on most other processors as well. Finally it should be noted
that the evolution of processors on smart cards is significantly slower than
that of general purpose processors.

3 Block Ciphers and Stream Ciphers

For block ciphers, the most important high level design choice is between
Feistel ciphers (DES, FEAL, Khufu, LOKI, Blowfish, CAST) and substitution-
permutation networks (SAFER, 3-WAY, and RC5). IDEA uses a generaliza-
tion of the Feistel concept. The advantage of the substitution-permutation
networks is that every bit of the intermediate ciphertext is modified in every
round. Apparently this makes it more difficult to find high probability dif-
ferential characteristics and linear approximations. On the other hand every
operation has to be invertible, and the encryption and decryption operation
are in general different. This is not a disadvantage in software, but poses
some problem for hardware implementations (note that in 3-WAY, which is
hardware oriented, both operations are identical). For Feistel ciphers, fewer
constraints are imposed on the round function and more cryptanalytic ex-
perience is currently available. .

A crucial component in every algorithm is the nonlinear element, which
usually consists of S-boxes. RC5 is an exception, since it uses data dependent
rotations. 3-WAY uses one small S-box (with 3 input bits and 3 output bits,
denoted with (3 — 3). For the other algorithms, we have the following
numbers: DES (6 — 4), FEAL and SAFER (8 — 8), LOKI (12 — 8),
Khufu, Blowfish, and CAST (8 — 32), and IDEA (16 — 16). The S-box of
FEAL is a modular addition, which is a quite weak operation, while both
SAFER and LOKI use exponentiation, CAST uses bent components, and
Khufu and Blowfish use secret values. IDEA relies on three incompatible
arithmetic and logic operations.

The diffusion of information is usually performed with linear operations.
DES, LOKI, and 3-WAY use a bit level permutation. FEAL and IDEA use a
* structure with different consecutive S-boxes, while both Blowfish and CAST
add the output of 4 S-boxes. SAFER uses an operation with a butterfly
structure, denoted as the pseudo-Hadamard transform.

Recent cryptanalytic results show that using a too simple key schedule
is probably not a good idea, since it might introduce new weaknesses. On
the other hand, a complex key schedule will be a problem if the key is
changed often (this happens for example after every encryption in most

92

hash functions based on block ciphers). There is also a point of diminishing
returns since an attacker can always try to find the round keys rather than
the key itself. Key dependent S-boxes (such as in Blowfish and Khufu) do
not foster a quick key change.

From the cryptanalytic results available, we can draw the conclusion
that resistance against linear or differential techniques is not a property
of S-boxes or of linear mappings, but rather of the combination of both.
However, for a similar diffusion structure, increasing the size of the S-boxes
will increase this resistance (e.g., LOKI versus DES).

Most stream ciphers in the literature are based on shift registers which
operate at bit level. It turns out that they are in general not too fast
in software (e.g., the shrinking generator). Recently, several faster software
oriented proposals have been made (see for example [2, 19]). Two important
examples are RC4, which is a widely used proprietary algorithm, and SEAL,
which is extremely fast.

4 Hash Functions

Almost all practical collision resistant hash functions are iterated hash func-
tions, which means that they compress their input block by block by apply-
ing a compression function with fixed size inputs:

Ho=1V; H; = f(Hi-1,X;),1<1 <t h(z) = H;.

Here X; denoted the ith message block, while H; denotes the chaining vari-
able. The main design decision is whether the compression function f itself
should be collision resistant: this decision affects the complete design of the
function, since a collision resistant compression function should treat both
its arguments the same way. ’

The main argument in favor of a collision resistant and one-way compres-
sion function is the provable reduction of the security of the hash function
to that of the compression function. Another advantage of this construc-
tion is that the choice of a specific IV is not very important: the scheme
should be secure with any IV. Also, the size of the chaining variables can
be increased at the cost of a decreased performance; this corresponds to a
trade-off between security and speed. Moreover, the round function can be
used directly in applications where the size of the input is fixed. Finally
hashing can be done in a parallel for a variant based on a tree construction.

93

On the other hand, from analyzing the hashing process, it follows that
the roles of H; and X; are essentially different. This means that it seems
natural to impose different conditions on both inputs of the round function.
One can hope that loosening the requirements will improve the performance
of the hash function.

Hash functions which consist of a compression function with only a sin-
gle input include MD2 and Snefru; designs that treat chaining variables and
message blocks differently include MD4 and its variants. On the other hand,
the only round functions for which no collisions were found are those of Sne-
fru with more than 6 passes, MD4, SHA, and RIPE-MD (MDS5 is excluded).
This is rather surprising, as the MD4 variants are designs of the second type.

5 Indirect Constructions

As mentioned in the introduction, the popularity of DES has lead to con-
struction of hash functions based on block ciphers. Although it not yet pos-
sible to formalize the properties of a block cipher that are required to make
it suited for such an application, significant progress has been made on the
development of practical constructions (an important example is MDC-2).
However, these schemes are in general slow, since at least two encryptions
are required to hash a single block, and almost all constructions modify the
key after each encryption.

Alternatively, the availability of fast hash functions has prompted designs
of block ciphers and stream ciphers based on hash functions. While these
schemes are fast, caution is required since the use in these constructions
imposes additional conditions on the hash function, which they may or may
not satisfy.

6 Software performance

Table 1 gives an overview of the speed of the most important algorithms.
The timings were performed on a 16 MHz IBM PS/2 Model 80 with a 80386
processor, on a PC with a 60 MHz 80586 (Pentium) processor, and on a
DEC 3000/400 with a 133 MHz Alpha processor. This gives an idea of the
evolution in software performance over the last seven years. The PC im-
plementations were written by A. Bosselaers. Most of them use additional
memory to improve the speed. The C-code was compiled with a 32-bit
compiler in protected mode. For several algorithms an implementation in

94

assembly language was written as well. The C-code for the Alpha was writ-
ten by M. Roe [25, 26].

For comparison, we have included the timings for a modular squaring and
exponentiation with a short exponent. In this case a 1024-bit modulus was
chosen, and no use was made of the Chinese remainder theorem to speed
up the computations. For the exponentiation the fourth Fermat number
(216 + 1) was used as exponent.

The table is far from complete, but it gives a good idea of the differences
between the algorithms and between the machines. Note that in some cases
the C-compiler produces code that is almost optimal. By comparing the
different entries, one can conclude that the DES implementation on the PC
is better optimized than that on the Alpha. Moreover, highly optimized
DES code is not much slower than most ‘fast’ block ciphers, but it requires
a 64 Kbyte table, which is a problem for some environments. From the DES
figures it can be derived that MDC-2 will run at about 100 Kbit/s on the
80386. Some algorithms like Snefru and SHA perform relatively better on
a RISC processor (such as the Alpha), where the complete internal state
can be stored in the registers. Also remarkable is the fast performance of
SEAL, that was tuned by its designers to be fast on 80x86 machines (use of
registers and operation on registers).

References

[1] C.M. Adams, “Simple and effective key scheduling for symmetric ciphers,”
Proc. of SAC’94, Workshop on Selected Areas in Cryplography.

[2] R. Anderson, Ed. Fast Sofiware Encryption, LNCS 809, Springer-Verlag, 1994.

[3] E. Biham and A. Shamir, “Differential Cryptanalysis of the Data Encryption
Standard,” Springer-Verlag, 1993.

[4] B.O. Brachtl, D. Coppersmith, M.M. Hyden, S.M. Matyas, C.H. Meyer, J. Os-
eas, S. Pilpel, and M. Schilling, “Date Authentication Using Modification De-
tection Codes Based on a Public One Way Encryption Function,” U.S. Patent
Number 4,908,861, March 13, 1990.

[5] L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry, “ Improving resistance to
differential cryptanalysis and the redesign of LOKL” Advances in Cryptology,
Proc. Asiacrypt’91, LNCS 789, H. Imai, R.L. Rivest, and T. Matsumoto, Eds.,
Springer-Verlag, 1993, pp. 36-50.

[6] J. Daemen, R. Govaerts, and J. Vandewalle, “A new approach to block cipher
design,” Fast Software Encryption, LNCS 809, R. Anderson, Ed., Springer-
Verlag, 1994, pp. 18-32.

95

type algorithm 16 MHz 80386 | 60 MHz 80586 | 133 MHz
H C Ass. C Ass. | Alpha C
block DES{ 0.13 0.20
cipher DES 0.51 0.66 7.0 7.7 1.86
IDEA 0.52
FEAL-16 0.33 0.62
Blowfish-16 11.6
3-WAY 5.2
RC5% 7.7
SAFERx« 7.68
stream RC4 15.4
cipher SEAL 80.0 115.0
hash MD2 0.078 0.078 1.7 1.7 0.76
function MD4 2.67 6.27 54.1 72.5 78.8
MD5 1.85 4.40 37.2 513 60.0
SHA 0.71 1.37 147 20.9
SHA-rev. 13.7 195 41.5
RIPEMD 1.33 3.10 26.8 35.7 48.0
Snefru-8 027 0.27
modular squaring 0.0185 0.0973 | 0.267
arithmetic | exponent. 0.001440.0071 | 0.00204

t includes key scheduling,.
1 RC5-32/32/20 (32-bit words, 32 rounds, 20-byte key).
* SAFER-K64 with 6 rounds.

Table 1: Performance in Mbit/s of several block ciphers, stream ciphers, and
hash functions on a 16 MHz 80386, a 60 Mhz 80586, and a 133 MHz Alpha.

96

[7] 1.B. Damgard, “A design principle for hash functions,” Advances in Cryp-
tology, Proc. Crypte’89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990,
pp- 416-427.

[8] “Date Encryption Stendard,” Federal Information Processing Standard
(FIPS), Publication 46, National Bureau of Standards, U.S. Department of
Commerce, Washington D.C., January 1977.

[9) “Secure Hash Standard,” Federal Information Processing Standard (FIPS),
Publication 180, National Institute of Standards and Technology, US Depart-
ment of Commerce, Washington D.C., 1993.

[10] FIPS 180, “Proposed Revision of FIPS 180, Secure Hash Standard,” Federal
Register, July 11, 1994.

[11]) H.M. Heys and S.E. Tavares, “On the security of the CAST encryption algo-
rithm,” Canadian Conference on Electrical and Computer Engineering, Sept.
1994, Halifax, Canada.

[12] B.S. Kaliski, “The MD2 Message-Digest algorithm,” Request for Comments
(RFC) 1319, Internet Activities Board, Internet Privacy Task Force, April
1992.

[13] X.Lai,J.L. Massey and S. Murphy, “Markov ciphers and differential cryptanal-
ysis,” Advances in Cryptology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies,
Ed., Springer-Verlag, 1991, pp. 17-38.

[14] J.L. Massey, “SAFER-K64: A byte oriented block-ciphering algorithm,” Fast
Software Encryption, LNCS 809, R. Anderson, Ed., Springer-Verlag, 1994,
pp. 1-17.

[15] M. Matsui, “Linear cryptanalysis method for DES cipher,” Advances in Cryp-
tology, Proc. Eurocrypt’93, LNCS 765, T. Helleseth, Ed., Springer-Verlag,
1994, pp. 386-397.

. [16] R. Merkle, “Fast software encryption functions,” Advances in Cryptology,

Proc. Crypto’91, LNCS 576, J. Feigenbaum, Ed., Springer-Verlag, 1992,

‘ pp. 476-501.

[17] R. Merkle, “A fast software one-way hash function,” Jourral of Cryptology,
Vol. 3, No. 1, 1990, pp. 43-58.

[18] S. Miyaguchi, “The FEAL cipher family,” Advances in Cryptology, Proc.
Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 627-638.

[19] B. Preneel, Ed. Fast Software Encryption, LNCS, Springer-Verlag, to appear.

[20] “Race Integrity Primitives Evaluation (RIPE): final report,” RACE 1040,
1993.

[21] R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications ACM, Vol. 21,
February 1978, pp. 120-126.

[22] R.L. Rivest, “The MD4 message-digest algorithm,” Request for Comments
(RFC) 1320, Internet Activities Board, Internet Privacy Task Force, April
1992.

»

97

[23] R.L. Rivest, “The MD5 message-digest algorithm,” Request for Comments
(RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April
1992.

[24] R.L. Rivest, “The RC5 encryption algorithm,” Fast Software Encryption,
LNCS, B. Preneel, Ed., Springer-Verlag, to appear.

[25] M. Roe, “Performance of symmetric ciphers and one-way hash functions,” Fast
Software Encryption, LNCS 809, R. Anderson, Ed., Springer-Verlag, 1994,
pp- 83-89.

[26] M. Roe, “Performance of block ciphers and hash functions — one year later,”
Fast Software Encryption, LNCS, B. Preneel, Ed., Springer-Verlag, to appear.

[27] Ph. Rogaway and D. Coppersmith, “A software-optimised encryption algo-
rithm,” Fast Software Encryption, LNCS 809, R. Anderson, Ed., Springer-
Verlag, 1994, pp. 56~63.

[28] B. Schneier, “Description of a new variable-length key, 64-bit block ci-
pher (Blowfish),” Fast Software Encryption, LNCS 809, R. Anderson, Ed.,
Springer-Verlag, 1994, pp. 191-204.

[29] M.J. Wiener, “Efficient DES key search,” Technical Report TR-244, School of
Computer Science, Carleton University, Ottawa, Canada, May 1994. Presented
at the rump session of Crypto’93.

98

N e T

P

P S

