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Extended Abstract

Abstract

We propose a new attack on Feistel ciphers with a non-surjective
round function. CAST and LOKI91 are examples of such ciphers.
We extend the attack towards ciphers that use a non—uniformly dis-
tributed round function and apply the attack to CAST.

1 Introduction

The Feistel structure is a very common structure for block ciphers, the most
prominent example being the Data Encryption Standard [FI46]. Although
DES has been a worldwide de facto standard since 1977, everybody agrees
that it is reaching the end of its life time. The main reason is the size of the
key, which is only 56 bits. The key size was already a topic of discussion in the
seventies [DH77], and it was shown recently by M. Wiener that at present an
exhaustive key search in 3.5 hours requires only 1 million US$ of equipment
[W93]. Of more theoretical interest are recent cryptanalytic techniques such
as differential [BS93] and linear [Ma93a, Ma94] cryptanalysis which provide
techniques to recover the key faster than exhaustive search. Currently, they
do not offer a threat for practical applications, but it can be expected that
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within the next five years practical attacks are developed. These problems
can be overcome easily by using triple DES with two keys, at the cost of a
reduced performance.

A second problem of the DES is the fact that it was designed taking into
account 1977 hardware constraints. In spite of this, very fast software imple-
mentations have been reported (7 Mbit/s on a 80586/60MHz and 12 Mbit/s
on a HP-715/80). However, algorithm designers hope to exploit in a more
efficient way the present day computer architectures, and to achieve a better
tradeoff between security and speed. In order to build on the experience gath-
ered with the cryptanalysis of DES, most designers prefer to keep the Feistel
structure. Examples of such proposals are FEAL [M91], LOKI91 [LOKI91],
Blowfish [S94], and CAST [AT93, HT94, A94]. By introducing new struc-
tures for the round function, designers try to improve the performance and
to reduce the vulnerability to differential and linear attacks. However, this
might introduce new vulnerabilities, especially if the number of rounds is
reduced in order to optimize the speed.

In this extended abstract we will concentrate on the weaknesses that are
introduced by the use of non—surjective or, more general, non-uniform round
functions. Several studies revealed that in general large S-boxes are more
resistant against linear or differential cryptanalysis. It is even argued that
one can choose random S-boxes and obtain a secure cipher. We show that
this is not always true. In section 2 we describe the general principle of our
attack. In section 3 we apply the attack to CAST and LOKI91. In section 4
we conclude by discussing some design principles.

2 General principle

We first explain our notation and then we present the attack and an exten-
sion.

2.1 Notation

Consider a Feistel cipher, consisting of n rounds (with n even). The plaintext
input consists of two p-bit blocks Ly and Ry, the key is denoted by K,
the ciphertext by (L,, R,). Each round takes a 2p-bit message input block
(Li, R;) and a k-bit key input (K;). The round output is given by:

Ri Li_l & Fz(Kz @ -Ri—l)
L; Riy i=1,...,n~1.

For the last round (no swapping) this becomes:

L, = Ln-—l ® Fn(Kn 7 Rn—l)
R, = R,.

101




Then the following relation holds:

nf2

Ba(Lo, Ro, K) = @D Fai( K2 @ Ryic1) = Ro @ L, (1)

i=1

For unbalanced round functions Fj;, the sum (3, will be unbalanced if we
assume that the round keys are independent. We expect that this also holds
for most key schedulings. Since not all values of 3, have the same probability,
an attacker gathers statistical information about the plaintext by looking at
the ciphertext.

2.2 Basic attack
If we take the last round out of the sum, (1) becomes

nf2-2

Bo-1(Lo, Ro, K) = € F2i(K2i® Roic1) = Ro® L, @ Fo(K. ® R,). (2)

=1

Non-surjective round functions F; will result in a non-surjective 3,_2 for
small enough values of n. This is quantified in the following lemma.

Lemma 1 Denote by f the fraction of p-bit vectors that are a possible output
of the round function, and by fn—s the fraction of possible values for Bn—z. If
the round functions are independent:

faa=1= (1= fas- ). (3)
Proof: We can write
Pr—2 = Pn-a ® Faz.
A value X is a possible value for §,-2 iff
X=YeaZ, (4)

and Y, Z are possible values for 3,4 and F,_; respectively. There are 2°
solutions for (4). A value for B,—, is impossible iff for all solutions (X,Y’)
holds that X or Y is impossible. By application of the product rule we obtain

1= facz = (1= faa - ).

A non-surjective (3,_2 makes the following attack possible. For all values
K, calculate the right hand side of (2) by use of the known plaintext R and
the ciphertext L,. Check whether this is a possible value for 3,-;. Wrong
key guesses will eventually produce a value that is outside the range of B,-.
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Since there are 2% possible round keys K., we need on average —k/ log,(fn—2)
pairs to determine the right value of K,,. The work factor of the attack is
28/(1 = fo-2).

For small values of k, one can search for several round keys at once. This
way, fn—s4 can be used instead of f,_,.

2.3 Statistical attack

Equation (3) shows that for larger values of n, f,_, goes very fast to 1. But
Brn—2 will not be uniformly distributed: all outputs are possible, but they
don’t occur with the same probability. For still larger values of n, B,_2
becomes close to a “random function”, which should be a design goal. Our
attack can be modified to deal with surjective but unbalanced 3,’s. First
calculate the relative probabilities for each possible value of §,_;. Then
calculate the right hand side of (2) for every value of K,, and for every known
plaintext—ciphertext pair. It is now possible to calculate the a posteriori
probability for the key candidates.

By Bayes’ rule we can express the probability Pr(K,|Ro, L,) that K, is
the correct key, given Ry and L,,:

Pr(K,) Pr(Ro, L,| Ky) Pr(Kn) Pr(f6,-2)
Pr(Ro, L) Pr(8,)

Let us denote with Pr'(K,) the probablllty that K, is the right key after the
processing of the i~th known plaintext (Pr®(K,) = 1/2¥). We have

Pr(K,|Ro, L) =

i — Pr~!(K.,) Pr( -2) 1 Pf(ﬁn—z)
Pri(K,) = Pr(B:) Y 31:11 Pr(ﬁ’ .

This expression can be evaluated for each key candidate and assigns to
each round key a probability that can be used for a ranking of the most
probable keys.

-3 Application to CAST and LOKI91

3.1 CAST

The round function of CAST is constructed as follows: if b;b;b3bs denotes
the four byte input, the output is obtained by adding the output of the four
S-boxes:

F(bybabsbs) = S1[b1] @ Sa[ba] @ Ss[bs] @ Safby].

The four S; are tables with eight input and 32 output bits. Since each S-box
has only eight input bits, its output can only take 256 values in GF(23?%).
If the four S-boxes are selected at random, the expected number of possible
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outputs is e~ x 232, where e denotes the natural logarithm base. This value
can also be computed from (3), since adding the outputs of the S-boxes
corresponds to concatenating rounds. Table 1 gives the f-values for the
combination of 1, 2, 3, and 4 S-boxes.

# S-boxes f
1 5.96 x 1078
2 1.53 x 1073
3 3.90 x 10~
4 6.32 x 1071

Table 1: f-values for the combination of 1 to 4 S-boxes.

The CAST S-boxes are constructed from eight-bit bent functions that
are the Walsh transforms of the concatenation of four six—bit bent functions.
We constructed S-boxes following this design principle and obtained the same
value for f.

We can summarize the CAST key scheduling in the following way: for
each round first an “initial value” of two bytes is calculated from the master
key. This calculation is simple for the first rounds, and more complicated
for the last round. These two bytes are expanded in a non-linear way to the
32-bit round key. The entropy of each round key is therefore at most 16 bits.
This enables us to search for three round keys at once.

We can apply the simple attack on six rounds of CAST. Equation (2)
becomes:

Bs=Fy = Re®LeDF(KsDRsDF(KsD LD F(Ke®D Rs))) D F(Ke®Rs). (5)

Ry is a part of the plaintext, Ls and Re form the ciphertext. K4, K5, and
K are the round keys we are searching for. Note that by swapping plaintext
and ciphertext, we can apply the same attack to find K;, K, and K3. The
work factor of the attack is then 1.5 x 2%8. The number of required texts is
only —log(2%)/log(1 — e™') ~ 82. Note that in [HT94] it is estimated that
the required number of known plaintexts to break six rounds of CAST with
a linear attack is at least 2!2.

Since the sum of two CAST round functions is surjective, the simple
attack is not applicable to more than six rounds. The statistical attack needs
a table of size 232, Although this is not infeasible, we are currently unable
to actually implement this attack. We are developing an implementation for
a mini-version of CAST that operates on a four byte input and with S-boxes
that consist of 16 4-bit functions.
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3.2 LOKI91

The round function of LOKI91 takes a 32-bit message input and exors this
with a 32-bit round key. These 32 bits are expanded to 48 bits and split
into four parts. Each part enters the 12 x 8-bit S-box. This produces the
8 x 4 = 32 output bits. Note that of the 48 input bits to the nonlinear
part, 32 bits are pairwise equal. In [Kn94] L. R. Knudsen observed that this
implies that the output can only take a fraction of £ of the possible values.

Each round key consists of 32 bits. The key scheduling of LOKI91 is such
that Ky = K1 <<< 12, 1 = 1,2,...,8, where <<< denotes “left wise
rotation.” Therefore we can search for the round keys of two rounds at once,
and apply the basic attack to five rounds of LOKI91. We did not implement
the statistical attack for LOKI91. Since f is about the same for LOKI91 and
CAST, we expect comparable results, except for the fact that we only can
peel off two rounds.

4 Discussion

We have shown that the use of uniformly distributed round functions is
probably a good design criterion for Feistel ciphers. Feistel ciphers that
make use of non—surjective round functions should use a number n of rounds
that is large enough to make f,_; at least surjective. In order to counter
the statistical attack, the sum should have a distribution which is close to
uniform. We conjecture that the deviations of the different outputs squared
approximates the number of required known plaintexts. Therefore this type
of attack will become infeasible for a large number of rounds.

With respect to the key scheduling of CAST [A94], we can say that round
keys with 16 bit entropy are inadequate. The computational cost for an at-
tacker to peel off several rounds is too low. This makes CAST more vulner-
able to our attack than LOKI91.

5 Acknowledgement
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Abstract

Differential cryptanalysis is a powerful methodology for attacking private-key block
ciphers. It has been applied successfully to many ciphers, including FEAL and Khafre.
In this paper, it is shown that when randomly generated substitution boxes (s-boxes)
are used in the CAST encryption algorithm, the resulting cipher is resistant to the
differential attack. Specifically, assuming independent round keys, it is shown that 10
rounds of CAST will provide a better degree of resistance to differential cryptanalysis
than 16 rounds of the Data Encryption Standard (DES).

1 Introduction

CAST [1, 2] is a 64-bit private-key block cipher which encrypts by using a number of
rounds consisting of large substitution boxes (s-boxes) with fewer input bits than output
bits. Two of the most powerful cryptanalytic attacks against iterated block ciphers such as
DES [3] and CAST are linear cryptanalysis [4] and differential cryptanalysis [5]. It has been
shown that CAST, using randomly generated s-boxes, is resistant to linear cryptanalysis [6].
In this paper, we examine the resistance of CAST to differential cryptanalysis.

The flow of data between consecutive rounds in CAST is similar to that of DES. Both

algorithms implement a round function F’ which operates on the right half of the data block.
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The output of F is XOR’d (XOR = exclusive-or) with the left half of the data block to
produce a new left half block and then the left and right half blocks are swapped. However,
the two ciphers differ significantly in the implementation of the round function F.

In DES, the round function F’ expands 32 bits of input data to 48 bits using an expansion
table E. The expanded data is then XOR’d with 48 key bits and fed into eight 6x4 s-boxes.
The output of the 8 s-boxes are concatenated together and then permuted according to a
permutation function P to form the 32 output bits. In CAST, the round function XORs
32 bits of input data with 32 key bits and feeds the result into four 8x32 s-boxes. The 32
output bits of the four s-boxes are XOR’d together to form the 32 output bits of F. The
round functions of DES and CAST are shown in Figure 1. In [2, 7], CAST is implemented
using s-boxes based on partially bent functions. In addition, a key scheduling algorithm is
used to assign keys to the various rounds. In this paper, we assume that CAST employs

randomly generated s-boxes and uses independent keys in each round of substitution.

2 Distribution of Entries in the XOR Table

Differential cryptanalysis is a chosen plaintext attack which makes use of the highly
probable occurrences of sequences of XOR differences at each round given a particular
' plaintext difference. The foundation for the differential attack is the ability to predict the
ouput XOR difference of the round function F given the knowledge of the input XOR
difference to that round. Information on the likelihood of possible output XOR values
given particular input XOR values is available in an XOR difference distribution table [5].
In the XOR table, each row corresponds to a particular input XOR‘ value, each column

corresponds to a particular output XOR value, and the entries themselves represent the
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Figure 1: Round Functions of DES and CAST

number of possible pairs corresponding to the input and output XOR value. Using the
XOR table, it may be possible to find a highly probable sequence of differences which can
be used to cryptanalyse a block cipher.

In reference to CAST, consider a set of four éx32 s-boxes where we denote the 8-bit
inputs to the 4 s-boxes as z1, %, 3, and z4, and the corresponding outputs of the 4 s-boxes
as Si(z1), S2(z2), S3(z3), and Sy(z4). For the complete 32-bit round function, given an
input XOR value Az = [Az;, Azs, Azs, Azy), the output XOR value, Aw, is given by the

following equation:

4

Aw = (PISi(z:) & Si(=7)] | o)

=1
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where @ is the bitwise XOR operation and z} = z; @ Axz;.

Define the following functions:

0 ifAz; =0
f(A””")={ 1 if Az #0 @

and
4
9(Az) = Ef(mi). ®3)
i=
Thus, g(Az) is the number of s-boxes that have non-zero XOR inputs when Az is applied.
In fact, if Az; # 0 for ¢ = 1 to 4, i.e. , g(Az) = 4, then all the entries in the XOR table
corresponding to that Az will be multiples of 16. This means that the entries will be 16,
32, 48, etc. . By manipulating equation (1), one can see that all the following input pairs
have the same input XOR value Az = [Az;, Az, Az3, Azy4] and the same output XOR
value Aw:
[z1, 22, Z3, 24] < [27, 23, 23, 23]
(3, 22, 23, T4] © [21,23, 23, 2]]
[21,23, 23, 24] © [27, 22,25, 23]
(21,22, 25, x4] < [27, 23, 23, TF]
(21,22, 03,23] & [27, 23, 23, 4]
[z, 2%, 23, 24] < [21, 22,23, 7])
(23, 22, 23, 24] © [21,23, 23, 2})
(21,23, 2%, 24] < [27, 22, 23, 2]]
Since each of the above pairs constitutes an entry of 2 in the XOR table corresponding

to the row Az and the column Aw, 8 pairs will give rise to an entry of 16 in the XOR table.
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Suppose it happens that for the same Az, there also exists an input £ = [#;, 7}, 43, %4,
different from all the 16 inputs listed above, such that the output XOR is also Aw, then
the entries in the XOR table corresponding to the row Az and the column Aw will be 32.
Entries of 48, 64, etc. can be explained in a similar way.

In order to determine the likelihood of XOR table entries of 16, 32, etc. , we can rewrite
equation (1) as:

4
Aw = @Ay; (4)

=1
where Ay; = 9;(z;) @ S;(z}). Since Aw is 32 bits long, it can assume at most 232 distinct
values. However, each Ay; can assume at most 27 values for a particular Az;. This occurs
because for a fixed Az;, since z; is 8 bits long, there will be 28/2 = 27 unordered pairs of
(zi,2; 0 Az;). If each of these pairs gives rise to a distinct value for Ay;, then Ay; can take

at most 27 distinct values.

Since the output vectors of the s-boxes are randomly generated, the values obtained by
the modulo 2 sum of the Ay; ’s will also be randomly distributed. This results because the
j-th bit of the output XOR, Aw(), is just the modulo 2 sum of the j-th bit of the four
s-box XOR outputs, @i, Ayz(j ). Since the output bits are randomly generated, it follows
that each output XOR bit of an s-box has an equal chance of béing 0 or 1. Assuming
independence between the output XOR bits of different s-boxes, the modulo 2 sum of the
J-th bit of the four s-box output XORs will also have an equal chance of being 0 or 1.
Consequently, one can conclude that Aw may assume any one of the 232 possible values
with equal probability.

In fact, as the possible values of Aw can be found by trying all the (27)* different
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combinations of Ay; @ Ays @ Ays @ Ays, the distribution of output XORs for a given input
XOR is equivalent to tossing (27)* balls randomly into 232 bins with each ball having a
weight of 16. We wish to determine the distribution of the balls in the bins.

Let Y be a random variable representing the number of bins having & balls when = balls

are being tossed randomly into m bins. It has been shown that for large » and m [8, 9],
ElYi] » m——(—)* (5)

For m = 232 and n = 228, E[Y};] will be the expected number of Aw values that have
XOR entries of 16*k for a particular Az when g(Az) = 4. By dividing E[Y)] by m, one
can get the expected percentage of Aw values that have XOR entries of 16*k. For choices
of Az such that g(Az) = 3, the corresponding entries in the XOR table can be shown to
be multiples of 2048 [10] using a similar argument as in the case of g(Az) = 4 and, in this
case n = 221. A summary of the results for g(Az) = 4 and g(Az) = 3 is listed in Table 1.

For Az’s which have g(Az) = 2, the corresponding non-zero entries in the XOR table
will be multiples of 2!%. In fact, the probability that all the entries are either 0 or 218 is
practically 1. For those Az’s which have g(Az) = 1, the corresponding non-zero entries
in the XOR table will be multiples of 22°. The probability of having entries of magnitude
k * 2% for k to be an integer greater than 1 is practically zero. Finally, for the trivial
case where g(Az) = 0 (i.e., Az = 0), there is an entry of magnitude 232 for the column
corresponding to Aw = 0 and the entries are zero for all the other columns.

Note that as the value of g(Az) goes down, the corresponding magnitudes of the entries
in the XOR table will go up and it is extremely unlikely for a row in the XOR table

corresponding to g(Az) = 7 to have entries that are greater than that of a row corresponding
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g(Az) | Entry Value | % of Entries

4 0 93.94

4 16 5.87

4 32 0.183

4 48 3.83% 1073
4 64 5.97+ 10~°
4 80 747+ 1077
4 96 7.78 % 107°
4 112 6.94 10~ 11
3 0 99.95

3 2048 0.0488

3 4096 1.19% 1075
3 6144 1.94%107°
3 8192 2.37+ 10713

Table 1: Expected Distribution of Entry Value in XOR Table for g(Az)=4 and g(Az)=3

to g(Az) = j where j < i.
3 Iterative Characteristics

Input XOR differences of zero to the round function F always lead to output XOR
differences of zero with a probability 1. This is called the 1-round trivial characteristic.
If such a trivial characteristic appears in every r rounds of encryption and the plaintext
is equal to the ciphertext after r rounds of encryption, then we say we have an r-round

iterative characteristic.

3.1 2 Round Iterative Characteristics

Let @ represent a particular 32-bit XOR vector. The flow of data in a 2-round iterative

characteristic is shown in Figure 2 and has the following form:
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(2,0)
0 «— 0 with probability 1
0 — ® with probability p
(2,0)

where the elements in brackets represent the left and right half XOR values respectively

and the arrow represents the mapping of the round function F.

o ' 0

Ki

Kisr

0] 0

Figure 2: 2-round Iterative Characteristic

Let ¢ = P(h(Az,0) = 16 | g(Az) = 4) where h(Az,0) is the entry in the XOR table

corresponding to an input XOR value of Az and an output XOR value of 0. Since Aw is

- randomly distributed among the 232 possible values, for a particular Az with g(Az) = 4,
one can use Table 1 to predict that ¢ = 0.0587.

The number of Az with g(Az) = 4 is (28 — 1)%. Let u represent the expected number

of rows in the XOR table that will have the entry value h(Az,0). Thus, for h(Az,0) = 16,

p=q*(28 - 1)* ~ 2.5% 108 if we assume that the occurrence of h(Az,0) = 16 for different

Az’s are independent. An entry of 16 in the XOR table means that the corresponding
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differential probability p will be 35 = 2728,

Using a similar analysis for g(Az) = 3,2 and 1, one can get the values listed in Table 2. It
is highly unlikely to find an s-box with which to construct a 2-round iterative characteristic
with p = 277 (on average, 3 out of 100,000 selections). In fact, it would not be difficult
to apply a screening process to prevent the occurrence of a 2-round iterative characteristic
with a probability of p = 2=7. However, it is very likely that an s-box will exhibit a 2-round
iterative characteristic with p = 2714 when g(Az) = 2. We shall assume that the probability

1
per round for the best 2-round iterative characteristic is thus (2714)2 = 2-7.

9(Az) | h(Az,0) W P

4 16 2.5%10% [ 2-28
4 32 7.8%10° | 2727
4 48 1.6*10° | 2204
4 64 2.5%10% | 2~
4 80 32 9-25.7
4 96 3.3*10-1 [ 2-254
3 2048 3.2*%10% [ 27
3 4096 7.9 2-20
3 6144 | 1.3%10° | 27194
2 218 1.5 2-T14
2 219 2.8%10°°% [ 2-13
1 925 3.0%¥10~° | 27

Table 2: Likelihood of Occurrence of 2-round Iterative Characeristic

3.2 Iterative Characteristics with more than 2 Rounds

According to [11], the flow of data in a 3-round iterative characteristic is as follows:
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(T,0)

0 « 0 with probability 1

® — T with probability p;

I' — & with probability p,

(2,0)
where ®,T represent 32-bit XOR vectors. Although the inputs and outputs are not the
same, one can concatenate this 3-round characteristic with itself with ® and T' interchanged
to get a 6 round iterative characteristic such that the inputs and the outputs will be the
same.

Since the probability per round for the best 2-round iterative characteristic is 277, a
3-round iterative characteristic needs to have p; * po > 272! in order to have a better
performance than the 2-round iterative characteristic.

A 3-round iterative characteristic is made up of three 1-round characteristic. In section
2, it was shown that the entries in the XOR table depend on the values of g(Az). The most
likely maximum entry when g(Az) = 1 is 225 and hence the highest one-round difference
probability that is likely to occur in such a case is %;—2- = 277, Similarly, the highest one-
round difference probability that is likely to occur when g(Az) = 2, 3 and 4 will be 2714,
2-194(= 342048 and 27252(= Z42) respectively.

In order for p; * p2 > 272!, we only need to consider the case when p; = 277 and
p2 = 277, This means that g(T') = 1 and ¢g(®) = 1. If the XOR input value of the round
function F is denoted by Az and the output XOR value by Aw, we can denote g(Aw) as
the number of s-boxes in the next round that have non-zero XOR inputs when Aw is used

as the XOR input. Consider A to be the event the XOR table contains a value of Aw for
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which g(Aw) = 1 given that g(Az) = 1. Then it can be shown that, using the assumption of
independence between rows in the XOR table, P(A) = 3.1%10~2 [10]. Hence, the probability
of an s-box having a ® and T so that they can be used in round number 2 of the 3-round
iterative characteristic is no greater than 3.1 * 10~2. Therefore, s-boxes which cannot be
used in the 3-round iterative characteristics are plentiful and it would be easy to apply a
screening process on the s-boxes to ensure that event A does not occur. Hence, there would
not be any 3-round iterative characteristics that would have a better probability per round
than the 2-round iterative characteristic.

In general, the format for an r-round iterative characteristic would involve a trivial round
where the input XOR value of that round is zero, followed by r — 1 non-trivial rounds. Since
the trivial round would have a probability of 1 (zero XOR inputs always give zero XOR
outputs), the r-round iterative characteristic would thus have a probability of:

| r—1
pa, = [[ . (6)
=1
where p; is the probability of the 1 round characteristic in round ¢ + 1 of the r round
_characteristic.

The probability per round for the 2-round iterative characteristic is 27, and so an r-
round iterative characteristic would have a better probability per round than the 2-round
iterative characteristic only if po, > (277)". This implies that p; = 277 for i = 1 to
r — 1. This results because the next best one-round difference probability is 2714 and the
incorporation of just one such XOR difference would make po, have the same value as
(277)". Hence we need to have a 1-round difference probability of 27 for each non-trivial

round. This means that for non-trivial rounds, the input pairs differ in at most 1 s-box and
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the output pairs differ in at most 1 s-box as well. This is equivalent to event A and the
screening process mentioned earlier would ensure that this event does not happen. Hence,
an r-round iterative characteristic that gives a better probability per round than the 2-round

iterative characteristic will not occur.

4 Differential Cryptanalysis of CAST with R Rounds

One can construct an r round characteristic by concatenating the 2-round iterative
characteristic with itself. This r round characteristic will then have a particular plaintext
XOR value AP and a probability pg, for a particular sequence of XOR values to appear
from round 1 to round r. If a plaintext pair having XOR value AP does indeed produce
the same sequence of XOR values in the intermediate rounds as we would expect from the
r round characteristic, then it is a right pair. Otherwise, it is a wrong pair.

By applying the 2-round iterative characteristic and using an r = R —2 round attack [5]
on a CAST system with R rounds, it can be shown [10] that the probability of a right pair

occurring will be:

2—14)[@%

(7)

PQr_, = (

As a result, for an 8 round version of CAST, the highest probability of a right pair occurring
is 2;42. CAST constructed with 10 rounds will reduce that probability further to 256, a
value which is achieved after 16 rounds of DES. For 12 rounds, the probability of the
occurrence of a right pair will be 2770, Since a plaintext block is only 64 bits long, at most
we can have 264 different plaintext blocks. A probability of 2=7° will thus make it infeasible

to apply a successful differential attack on a 12-round CAST cipher.
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5 Conclusion

In this paper, a method for predicting the entries in the XOR table of the round function
F in CAST using randomly generated s-boxes has been presented. Based on this method,
we have shown that the highest probability of predicting an output XOR value given a fixed
non-zero input XOR value in one round of encryption is 2=7. The corresponding value in
DES is %. Also, we have shown that in order to apply differential cryptanalysis to an R
round CAST system using a simple screening process on the selection of s-boxes for the
cipher, the best iterative characteristic is the 2-round iterative characteristic. The best
2-round iterative characteristic has a probability of 2-1* and this value is almost 70 times
smaller than that of the best 2-round iterative characteristic in DES, which has a probability
of zi:. As a result, 10 rounds of CAST will reduce the probability of the occurrence of a

234"

right pair to 2756, a value which is better than the 16 rounds of DES encryption.
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An average case analysis of a differential attack
on a class of SP-networks
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Abstract
We propose a differential attack on tree-structured substitution-permutation
networks. The number of chosen plaintexts required for the differential attack to
succeed is called the complexity. Our main result is to show that the expected
complexity of the attack is linear in the size of the network. This is the first
rigorous result concerning the complexity of a differential attack for a general class
of product ciphers.

1 Introduction

Differential cryptanalysis [4] has been applied to a considerable number of block ciphers,
with great success in most cases. The attack proceeds by finding a series of differences
Q known as a characteristic, or a set of related of characteristics known as a differential,
which then gives information about the secret key used in a cipher, when a sufficient
number of plaintext/ciphertext pairs are examined. Assume that we wish to determine
the subkey Kg that is being used in round R. The method of differential cryptanalysis
can be summarized as

Step 1 Find a highly probable r-round characteristic Q(AP,AC;, AC,,. .., AC,) which
gives (partial) information about the input and output differences of the round
mapping F' at round R ;

“Correspondence should be sent to DSTC, Level 12 ITE Building, QUT, Gardens Point, 2 George
Street, GPO Box 2434, Brisbane Q 4001, Australia; Email oconnor@dstc. edu. au.
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Step 2 Uniformly select a plaintext pair P, P’ with difference AP and encrypt this pair,
and assume that P, P’ is a right pair in that ) correctly predicts the ciphertext
differences at each round. Determine the candidate subkeys K, K},..., K} such
that each K could have caused the observed output difference. Increment a counter
for each candidate subkey K ;

Step 3 Repeat Step 2 until one subkey K% is distinguished as being counted significantly
more often than other subkeys. Take K}, to be the actual subkey.

If P,P'is a right pair then one of the candidate subkeys K!, K},..., K/ is the actual
subkey K, and K will be counted for each right pair. On the other hand, if P, P’ is a
wrong pair (not a right pair) then we assume that the candidate keys are independent of
Kg. Sowhen P, P’ is a right pair we record some information about Kg, by incrementing
its counter, but record only random information for wrong pairs, by incrementing counters
of random keys. The attack succeeds if we can examine enough plaintext /ciphertext pairs
so that the true key is counted ‘significantly more times’ than we expect a random key to
be counted. It is then natural to define the complezity M of a differential cryptanalysis to
be the number of encrypted plaintext pairs of a specified difference required to determine
the key or subkey.

One of the shortcomings of the general differential method as described above is the
absence of a formula relating the probability p of a right pair to the complexity M of the
attack. In general the complexity must be determined by trial and error. The signal-
to-noise ratio introduced by Biham and Shamir [3] determines the ratio between the
number of times the right key is counted as compared to a random key, which influences
the complexity of the attack, but does not formally relate p and M. Mivano [8] has
made progress is relating p and M, but his analysis is very heuristic. On the other hand,
in linear cryptanalysis [7], for a parity relation of probability p, a data complexity of
lp — 3|72 suffices to determine information about the key with high probability.

The main result of this paper is to display a differential attack on a class of SP-
networks devised by Kam and Davida [6]. These SP-networks have the property that
each ciphertext bit is provably a function of each plaintext bit, known as completeness or
nondegeneracy. We prove (Theorem 4.1) that the expected complexity of our differential
attack to recover the keying information is M = O(Rn/m) where n = m’ is the block
size and the SP-network is constructed from m-bit bijections. Since the expected value
of M is linear in the size of the network, we have a polynomial-time differential attack
for all such networks. This result is the first rigorous analysis of a differential attack on
a large class of ciphers with no heuristic assumptions.

Several other authors have also indicated weaknesses in the SP-network construction
of Kam and Davida. Adams [1] observed that these networks exhibited a poor ‘avalanche
effect’ due to the specific permutations in the construction. Also, Heys and Tavares [3],
by extending the work of Anderson [2], have been able to cryptanalyze a larger class of
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SP-networks which contain the Kam and Davida networks. However, the attack we will
present in this paper requires less the least chosen plaintext to recover the key in a Kam
and Davida network. '

2 The SP-networks of Kam and Davida

From now on in the paper when we refer to SP-networks, or simply networks, we mean
the SP-networks of Kam and Davida [6]. Assume that the network maps n-bit plaintexts
P =py.ps,...,pn € Z3 to n-bit ciphertexts C = ¢1,¢2,...,¢, € ZF. The network has R
rounds, where each round cousists of a substitution followed by a permutation. There are
n/m S-boxes S in each round, comprised of two randomly selected m-to-m-bit invertible
mappings 7o, 71, one of which is selected by a key bit (see Figure 1). Such S-boxes will
be called keyed S-boxes. Let the S-boxes at round r be S7,S57,..., S /m for 1 <r <R,
such that key bit k,; selects the substitution performed by ST,1 <r < R,1<j <n/m.
The network is constructed to have the following property (proven in [6]).

key bit . 5-box

Figure 1: Keyed S-box in an SP-network.

Lemma 2.1 For every S-box ST at round r, 1 < r < R, for the jth input to 57,
1 £ j £ m, there exists a subset of network inputs AL CH{pip2e-oupnl, |45 = m™,
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for which complementing any bits in A?; only effects the jth input to ST. Moreover, the
A}; are disjoint, so that |A]| = m” when A} = Us¢jcn A7 a
An example of the resulting network for the parameters n = 27,m = 3, R = 3 is given
in Figure 2. Observe that in the network in Figure 2, plaintext bit z; will enter S-box
S3; the outputs of this S-box will spread to the input of 3 distinct S-boxes at round 2;
finally at round 3 these outputs will spread to the inputs of 9 S-boxes. It can be shown
that after round r, plaintext bit z; will influence 37 ciphertext bits. The spread of this
influence can be represented as a 3-ary tree of depth 3 having z; as its root, and all
the ciphertext bits ¢; as leaves. Anderson [2] has called ciphers which exhibit this type
of influence for each variable tree ciphers. Essentially, tree ciphers are those ciphers for
which the influence of all variables increases geometrically from one round to the next.
For this reason, the block size n is of the form n = m®. A recent attack by Heys and
Tavares [5] on networks for tree ciphers, extending the initial work of Anderson [2], has
‘a complexity of M = 2™ - -:ﬁ- We will prove that a differential method can be used to

vield an attack with expected complexity M = O(Rn/m) when the network consists of
keyed S-boxes.

Figure 2: A Kam and Davida SP-network where n = 27,m = 3,R=3.
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3 Properties of XOR tables

We will review those notions from differential cryptanalysis [3] that will be required for
our purposes. Let [] be a boolean predicate that evaluates to 0 or 1 such as [n is prime].
Let Sam be the set of all invertible m-bit mappings, which are called m-bit permutations
or m-bit bijections. For a given 7 € Sym and AX,AY € Z7, define A (AX, AY) as

AAX,AY) = Y [#(X)+7(X') = AY]. )
X,X'GZ;"
AX=X+X'

The distribution of Ar(AX, AY') taken over all possible AX,AY € Z* is known as the
XOR table for 7, denoted as XOR...

Example 3.1 For a 3-bit bijection 7, let XOR, be the 8 x 8 matrix where XOR,.(¢, ) =
Az(4,7), 0 < 4,5 < 7, where 7,5 are treated as 3-bit binary vectors. Observe that
XOR~(0,0) = 8, and all other entries in the first row or column of XOR(r) are zero. If
7o =(7,2,4,1,5,6,3,0) and m, = (5,1,7,6,2,4,0,3) then

8 - . . . . . T r 8 . ]

- - - 4 - 4 . - 2 2 2 2

4 4 - 4 4

. 4 4 - 2 22 -2 .

XORq;o == 2 2 2 2 XOR”"I = . . . 4 . 4

2 2 2 2 2 .22 -2 .
2 2 2 2 -4 - - 4 .
2 2 2 2 2 .22 -2

To emphasize the sparseness of these tables zero entries are represented as a *.’. |

The XOR table for an m-bit substitution = has the following general form:

2m 0 0 0
0 a1 a3 o ai,zm—1 om 0
XOR, = 0 ax dz2  r°r Gzome = [ “0 A } (2)
. - . - T
0 amm_yy agmo12 -+ Ggm_yomy ]

For a given mapping = let AX,AY be an impossible difference if the XOR table entry
of AX,AY for 7 is zero. The following theorem is due to O'Connor [9].

Theorem 3.1 Let 7 be selected uniformly from Szm. Then the expected fraction of
impossible differences in XOR for which AX # 0 is tending to e~ = 0.6065. O

Thus approximately 60% of entries in the XOR table for a bijective mapping are impos-
sible when AX # 0. We will use this property of the XOR tables to distinguish between
the two permutations in a keyed S-box.
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4 A differential attack

In networks, each S-box S; is keyed to select one of two possible substitutions o, ¥1 €
Sam, that are assumed to be fixed and public for each S-box. For two plaintexts P and
F', let X; and X be the respective inputs entering S;, such that AX; = X; + X/ is
the input difference, and AY; = S(X;) + S(X!) is the output difference. For sake of
illustration let S; be keyed to implement 7y so that the XOR. table for S; is actually
XORz,. Since 7o and 7; are independent, Theorem 3.1 states that approximately 60% of
the time the entry for the pair AX;, AY; in XOR., will be zero (impossible), allowing g
to be identified as the keyed substitution. The attack proceeds by repeatedly applying
this observation to the S-boxes of the network.

From Lemma 2.1 it is possible to find P and P’ such that w(AX;) =1, where w(-)
is the Hamming weight function. Since 7y and 7, are invertible, there exists a,be Zp
such that mo(a) = 71(b) = ¥; and o', ¥ such that mo(a’) = 7y (b)) = Y/. f a + o’ # b+ ¥V
then we will say that 7o and #; can be distinguished by considering an input difference
of AX;. Formally, two substitutions o, m; can be distinguished if there is a 6-tuple
(AX;,AY;, a,d',b,8) such that mo(a) + mo(a’) = 7 (b) + m(¥) = AY; and a + o = AX;
or b+ ¥ = AX; but not both.

Example 4.1 Let S; be a 3-bit S-box such that ny = (7,1,0,2,5,6,3,4) and 7, =
(3,2,4,7,6,1,5,0). If S;(X;) =4 thena=T, b =2 since 7o(7) = 4 and 7;(2) = 4. If the
2nd bit of X; can be complemented such that S(X; +010) = 6, we then determine that
a’ =5 and b’ = 4. We conclude that S; is keyed to implement 7, since a + o’ = 010 and
b+ b =110 5 010. | o

The S-box attack outlined above can be directly applied to the S-boxes in the final
round of the network, and then to the next to final round and so on, ‘peeling off” rounds
until all key bits have been determined. At round r let the m inputs to S-box ST be
€15€2," " * 5 €m, Where ¢; = f;(p1j, P2, . .., Pmr—1;), since by Lemma 2.1, each input depends
on m"~! plaintext bits. Here f; is a boolean function which describes the dependencies
between c¢; and the plaintext after r — 1 rounds. Thus given two inputs that only differ in
bit positions p;;, w(AX;) < 1 since by Lemma 2.1 none of the other inputs to ST depend
on the bi ts p;;. For this reason we define the following notation. If « is an assignment to
the m”~! plaintext bits p;;, 1 < < m”™!, then let « C P denote an assignment to the n
plaintext bits p; where @ and P agree for the assignments of th e bits p;;, 1 < i < m™ 1,
Similarly define o/ C P'.

Figure 3 shows our attack for finding the key at round r of an network based on
distinguishing substitutions, assuming that the keys for rounds r + 1,...,R~1,R have
already been determined. For each S-box S7 at round r, the algorithm searches for two
plaintexts P, P’ such that AX; = X; + X! = e; (the jth unit vector), determines a, a’, b, b’
as in Example 4.1, and attempts to distinguish between 1o and 7.
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for i+ 1ton/mdo
distinguished « false ; j « 1
while not distinguished and j < m do
repeat

a + random assignment to pij, poj, - - ., Pur—1;
o « random assignment to pij, paj,. - ., Prmr1;
P + random assignment to p;,ps,...,p, such that « C P
P’ « such that o/ C P’ and P’ agrees with P on the assignments
of the bits outside of o'
Y; « output of ST on encrypting P
Y/ « output of ST on encrypting P’

until ; #Y/ {AXi=e¢;=X; + X!}

a « solve(mo(a) = Y;); a’ « solve(mo(a’) = Y));

b — solve(my(b) = Yi) ; b’ « solve(m;(¥) = ¥7) ;
ifa+a #b+ Y then
distinguished « true
if a + a’ =¢; then
output key bit is 0 for ST
else output key bit is 1 for ST
else j —j+1
od
od

Figure 3: Distinguishing substitutions at round r.
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4.1 Analysis of the differential attack

The success of the attack outlined in Figure 3 depends on two quantities: (¢) the number
of plaintexts that are required to cause the input of an S-box to complement in one bit
position, and (77) the probability that S(X;) and S(X!), w(AX;) = 1, will permit =
and 7; to be distinguished. To answer (i), observe that for any fixed key, the network
~ implements an invertible mapping, even if the number of rounds is truncated at r < R.
Using this observation and the fact that ¢; is described by a balanced function fi, then
after two random assignments to the p;; we expect the output of f; to be complemented.
This implies that the repeat loop of Figure 3 will is expected to terminate after a constant
number of iterations. Then if substitutions can be distinguished with high probability,
only O(1) encryptions will be required to determine the key bit of a given S-box.

To answer (i7), we note that the probability of 7¢ and m being distinguished is
bounded from below by the probability that AX;, AY; is an impossible difference in
XOR, or XOR,,. If S; is keyed to implement 7;,, jo € {0,1}, it then follows that

Amg(AX: = X + XLAY =Y +Y)) > 2. (3)

But as 7;,, j1 = (jo + 1) mod 2, is chosen independently of 7;, then AX;, AY; is an
impossible difference in 7;, about 60% of the time from Theorem 3.1. Thus we expect
only two differences AX; ;, AY;; and AX,;, AY; ; to be selected before at least one of
these differences is impossible in ;. If this is the case then it follows that 7o and =
can be distinguished and the key bit for S; determined. We can now prove the following
theorem.

Theorem 4.1 Assuming all substitutions in the network are selected uniformly from
Som, then the number of encryptions required to recover the key for an network with
Rn/m S-boxes is expected to be O(Rn/m).

Proof. The expected number of encryptions required to generate two plaintexts whose
input to a given S-box differs by one bit is a constant. Also, the expected number of
encryptions required to distinguish between two independent permutations in any single
S-box is expected to be a constant. Since the permutations in each S-box are chosen
independently then O(Rn/m) encryptions are required to recover the key. a

Our attack is probabilistic and samples at most m entries from the two XOR tables
comprising a substitution, where the m possible input differences are AX;, w(AX;) = 1.
On average, only a constant number of these differences need be examined to distinguish
the substitution. Further, in the worst case, the probability that a substitution is not
distinguished after considering all m such input differences is approximately (1 — e"%‘)m.
In any case, if a particular sample of m XOR table entries fails to distinguish a sub-
stitution, the attack can be repeated with new sample entries until the substitution is
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distinguished. Also, in practice, the plaintext in Figure 3 could be chosen to maximize the
probability of distinguishing the substitutions, rather than at random, since the S-boxes
can be studied off-line.

We have generated pairs mo, 71 of random m-bit substitutions and attempted to dis-
tinguish between these substitutions by using all characteristics AX, w(AX) = 1. The
results of these experiments for m = 4,5, 6,7 are given in Table 1. For each value of m,
30,000 pairs of substitutions 7o, T, were generated, and let II be the set of such pairs of
substitutions. The first two columns of the table are defined as

I — ! bl
Pr(not distinguish) = L. > 3 [a+a : :T ] (4)
|| 70,m €Il w(AX)=1 m -2
7 — b bl
max Pr(not distinguish) = max lata + ] (5)
ik m - 2m

Then Pr(not distinguish) is the probability that a random pair of substitutions will not
be distinguished for some w(AX) = 1. The third column gives the fraction of the XOR
table that is zero which is approaching 0.6065 as expected from Theorem 3.1. Also, the
fourth column gives the probability that exactly one of A, (AX,AY) and A,,(AX,AY)
is zero, which is approaching 2. (1 — e"3) - €3

~2 = (.4773, also as expected by Theorem
3.1. Thus the probability of distinguishing the substitutions is high.

Pr(not distinguish) | max Pr(not distinguish) | A, | one zero

m
4 0.0666 0.7500 0.5873 | 0.4848
5 0.0323 : 0.3750 0.5968 | 0.4812
6 0.0158 0.1875 0.6017 | 0.4792
7 0.0078 0.1093 0.6041 | 0.4783

Table 1: Properties of XOR table for random m-bit substitutions.

5 Conclusion

Differential cryptanalysis is a method for recovering the key associated with an iterated
mapping using differences. In general it is difficult to determine the expected complexity
of a differential attack against a general class of product ciphers. We have presented a
differential attack on the SP-networks devised by Kam and Davida, and have also been
able to provide a rigorous analysis of the expected complexity of this attack.
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Kam and Davida [6] have also proposed a variant of the basic SP-network where in
addition to the substitution and permutation at each round, a key vector is XORed with
the ciphertext before the substitution. Unfortunately this variant is also susceptible to a
differential attack. Let K; be the portion of the key vector that is XORed with the inputs
to S-box S;. If AX; = X;+ X] are the inputs to S;, then X; + K; and X} + K; will be the
actual inputs to S;, and the difference of the inputs will still be AX;. Thus the previously
outlined attack can be applied to distinguish substitutions. Once the substitution that
an S-box implements has been determined, the key vector K; to an S-box S; can be
recovered using similar differential methods that have been applied to the S-boxes of

DES [3].
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