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Abstract:

In this paper we present asymptotic expreséions for the number of functions satisfying the Strict Avalanche
Criterion (SAC) with respect to one and two variables, previously developed by O’Connor. Cusick
recently gave a conjecture for a lower bound on the number of functions satisfying the SAC. Here, we

give a constructive proof for this conjecture. Moreover, we provide an improved lower bound.

1. Introduction

The Strict Avalanche Criterion (SAC) was introduced by Webster and Tavares [11] in a study of design
criteria for certain cryptographic functions. A boolean function f : Z5 — Z, is said to satisfy the SAC
if complementing a single input bit results in changing the output bit with probability exactly one half.
The SAC was intended to combine two earlier criteria for cryptographic applications due to [6] and [4].
Forré [5] extended the concept by defining higher order SAC. A boolean function on n variables is said
to satisfy the SAC of order k, 0 < k < n— 2, if whenever k input bits are fixed arbitrarily, the resulting
function of n — k variables satisfies the SAC. It is easy to see [7] that if a function satisfies the SAC of
order k, then it also satisfies the SAC of order j for any j = 0,1,...,k — 1.

As in the case with any criterion of cryptographic significance, it is of interest to count the functions
which satisfy the criterion. Many recent papers (for example [7], [2]) have been concerned with counting
functions that satisfy the SAC of various orders. It is easier to count the functions satisfying the SAC of

the largest order, because relatively few functions exist which satisfy these stringent criteria.
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2. Main Results

O’Connor [9] gave an upper bound for the number of functions f(x), where x = (z1,...,%,) is in
2, satisfying the SAC. Let S(n,k) denote the number of functions for which the output changes with
probability 1/2 if any one of the input bits z1, ...,z is complemented. He also gave [9] explicit formulas
for §(n,1) and S(n,2); of course these are upper bounds for the number of functions satisfying the SAC.
In this paper we give asymptotics for the size of 5 ('n, 1) and S(7,2), thus quantifying the upper bound
for the number of SAC function given in [9].
Cusick [1] gave a lower bound for the number of functions satisfying the SAC. He also gave a conjecture
that provided an improvement of the lower bound. In this paper, we give a constructive proof for this
conjecture. Moreover, we provide an improved lower bound. We also give a lower bound for the number
of balanced functions that satisfies the SAC.

Notation:
Throughout this paper, let

fa 1 23 — Z5 describes a boolean function with n input variables.

V = {v;|0< i< 2"~ 1}: denote the set of vectors in Z} in lexicographical order. A boolean
function f,(x) is specified by f,(x) = [bo, b1, ..., bon—1], Where b; = f,(v;).

e: denotes any element of Z7 with hamming weight 1. Let €, ¥v; denote the n — 1 least significant
bits of e and v; respectively.

a: denotes any element of Z’;“l with odd hamming weight.

gn : 2% — Zy: denotes the boolean function 1-x @ b, b € Z;. It is easy see that g, satisfies

gn(X) =TJn(xDa). )

M SB(-) denotes the most significant bit of the enclosed argument.

Definition 1 [11]: A boolean function f, : Z§ — Zj is said to satisfy SAC if complementing a single

input bit results in changing the output bit with probability exactly one half, i.e.,
271

P ACHL: fa(vide)=2""" )

=0

Definition 2 [3], [8]: A linear structure of a boolean function f, : Z3 — Zj is identified as a vector
c#0 € Z7 such that fr(vi @ c¢) @ fn(v;) takes the same value (0 or 1) for all 4,0 < 7 < 27 — 1.

The results of O’connor -[9] are quantified by the following two Lemmas.
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Lemma 1

$(n,1) ~ 2771 22" 1/2, 3)

Proof: Lemma 1 of [9] states
2%—1 2u—l
S(n’l) = (277,—2)2 : 4)

Applying Stirling’s formula, n! ~ (27rn)1/ %(n/e)™, to the binomial coefficient proves the Lemma.  []

Lemma 2
For n > 2,

S(n,2) > 22" ™, )
Proof: Lemma 2 of [9] gives the formula

on=3 n—2> ) 3 . . - 5
W E (@O e

1=0 7=0

Expanding the binomial coefficients shows that the inner sum is equal to the binomial coefficient sum

-5 ()=

=0

-m(i) given by

It is easy to prove by induction that m(¢) > 2%~2/4 for i > 2. Thus we have

2n-3

S 9 !‘_ on=2 3.27"%2-2
(n,)>zi 0; |2 . (8)

=0

By noting that

(M/2]
:E:: (Qi 4_ 1)“1 (}g%’) x2i+¢
i=0 ’ 9)
1 -1 M+1 M+1
=S+ D)7 (@ + )M - (1 -2V )
: 2
and taki‘ng M = 272 and z = 1, we have.
2n—3 2n—3 ’
1 2n_2 1 2n—2 1 2n—2
ol ; - - (9; - 41
§i<2i)>2;(22+1) <2i>_(22+1) 2 (10)
which proves the Lemma. N
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If we use Lemma 1 and Lemma 2 in the inequality (8) of [9], we have that the fraction of functions

satisfying the SAC is asymptotically less than
or~12 =1 9-n/2, (11)

Now we turn to the problem of lower bounds.

The following conjecture was given in [1] without proof. This conjecture implies that there are at least

22" boolean functions of n variables which satisfy the SAC.

Conjecture [1]: Given any choice of the values f,(v;), 0 < 7 < 2"1 — 1, there exists a choice of
fa(vi), 271 <4 < 2™ — 1, such that the resulting function fn(x) satisfies the SAC.

For n = 1, it is trivial to show that if f1(1) = f1(0)®1 then the resulting function satisfies the SAC. In the
following Lemma we prove that, for n > 2, there exist at least two choices for falvi), 271 <i<2n 1,

such that the resulting function satisfies the SAC.

Lemma 3:
Let fn = [An—1 [hn-1 @ gn-1]] Where h,_; is an arbitrary boolean function with » — 1 input variables,

n > 2, and g, is constructed as above to satisfy equation (1), then f, satisfies the SAC.

Proof:
Case 1: MSB(e) = 0:

21

> Favi)® fa(vide)
=0
gn-1_1 2" 1
Z fn(vi) & fn(v’l o) e) + Z fn(vi) 57 fn(vz $7] e)
=0 i=2n
211
= Z hn_l(‘\fi) & hn-—-l(‘}i ) é)~
=0
271
+ Y B (V) @ Bt (Vi € 8) @ a1 (Vi) © gna (Vi © &)
=0
gnmt_1 2n=1_3
D hn1(¥)@haa (i ®8)+ Y (Rama(V) © hnn(%:69))
=0 =0
—_ 2’!7.—1.

I

52




Case 2: MSB(e) = 1

2" ~1

Z fn(vz) ] fn(Vi @ e)
=0
on-1-1

=2 Y fu(vi)® fulviBe)
=0
2711
=2 Y h1(¥) @ b1 (Vi) B gno1 (Vi)
1==0
2n-1-1

=2 ) ga1(%)
=0
— 2n—1 .
which proves the Lemma. O
From Lemma 3 above, and by noting that we have two choices for g,, we conclude that, for n > 2, the

number of function satisfying the SAC is lower bounded by 2%""+!. Using the following Lemma, one

can provide some improvement to the above bound.

Lemma 4:

Let fn = [Pn-1 [ln—1 ® gn—1]] Where h,_; is an arbitrary boolean function with n — 1 input variables,
‘ln_l(x) = hn—1(x®a), n > 2, and g,_; is constructed as above to satisfy equation (1), then f, satisfies
the SAC.

Proof:
Case 1: MSB(e) = 0:
2"—1
Y Vi) ® fa(vide)
=0
2n—11 2"-1
= Y V)@ fa(vide)+ D fulvi) @ fu(vide)
=0 i=2n-1
2ni-
= Y haa(V) B b1 (Vi B @)
=0
2r-ial
+ Z hn——l(‘}i &7 a) S hn-—-l(‘}i Sad é) & gn—l(ei) @ gn—l(‘;‘i S é)
1==0
2nl-1 2"t -1
= Y hn1(¥) B b1 (Vi@ &)+ > (hni(Vi) ® hna(V: B &))
=0 1=0
=271 |
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Case 2: MSB(e) = 1:

2"—1
D [alvi) @ falvide)
1=0
2n=1i_1
=2 Y 1V @ hae1(Vi ® 2) © gno(V:)
1=0 )
2m=1-1
= D hac1(V) © b1 (Vi ©2) B gn1(V2)
120
2n=i-1
+ > hp1(Vi©2)® hno1(Vi) ® gno1(V: B a)
=0
2n—i-1
= D a1V ® hno1 (Vi © 2) B gno1(V:)
=0
2m—1-1
+ Z hn—l(‘.’i @ a) ® hn-1 (“’z) @ gn—l(‘}z)
=0
= 2" 1,
which proves the Lemma. O

Note that if the function f,—1 does not have any linear structures, then all the functions generated by
ln—1 @ gn—1 will be unique for all the 2"~? choices of a. From Lemma 3 and Lemma 4 we have 271 +2
distinct choices for fn-1(v;i), 27! < ¢ < 2™ — 1. Thus we have the following corollary:

Corollary 1:
The number of functions satisfying the SAC is lower bounded by

(22"‘1 - csn-l) (2% 4 2) + 2L8™ (16)

where LS™™* is the number of functions with n — 1 input bits having any linear structure. An exact
count for L8 is given in [10]. It can also be shown [10] that LS™ is asymptotic to (2" — 1)22""+1,
One should note that while this bound provides some improvement over the proved bound in [1],
exhaustive search (see Table 1) shows that the quality of this bound degrades as n increases. One
can improve this bound slightly by identifying special classes of functions f,(v;), 0 <1 < 271 -1
for which there is a large number of choices for f,(v;), 2°7! < ¢ < 2" — 1 such that the resulting
function, fn, satisfies the SAC. For example, if the function h,_; satisfies the SAC, then the function
fr = [An—1[Pr-1 ® c-x D b]], b € Z, also satisfies the SAC. Thus our bound is slighﬂy improved to

(22"“ - L8™ — SACn_1> (271 4 2) + 2*SACT 2L S a7
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where SAC™™* is the number of functions with n — 1 input bits that satisfy the SAC.

We now give a lower bound on the number of balanced functions that satisfy the SAC.

Lemma 5

Let fr, = [An—1 [ln—1 ® gn-1]] Where h,,_; is an arbitrary boolean function with » — 1 input variables

that satisfies Y. hnp_1(v:i) = 2773, [h,1(x) = h(x @ a), n > 2, and g,_; is constructed as above
wi(v;) odd

to satisfy equation (1), then f, is a balanced function that satisfies the SAC.

Proof:

From Lemma 5, it follows that f, satisfies the SAC. Here we will prove that f, is a balanced function.

27 -1 2n-1-1 2m-1-1
Yo )= Y, haa(@) 4 Y hae1(¥©2) @ gama (Vi)
=0 =0 =0
2n-1-1 2n—1_1
= Z hn—l(‘}i) + Z hn—l(‘;'i) D gn-1 (‘}z 7] a)
1=0 1=0
2n-1-1 2nsi-l
= Y haa(F)+ Y, Faai(V)®1-Vs
1=0 =0
2n=i_1 2n-1_1
= Y (ha@)+Eam)) 42 Y hea(®)
wi(V;) even wi(v;) odd
= 2n—2 + 9. 2n—-3
- 271—-1-
which proves the Lemma. O

Similarly, one can also show that the function f, = [hp—1 [An—1 B gn-1]] Where h,_; is an arbitrary
boolean function that satisfies Y.  hn,_1(vi) = 2772 is a balanced function that satisfies the SAC.

wi(v;) even
From the Lemma above, it follows that the number of balanced SAC functions is lower bounded by

271,—2 gn-241
<2n_3) 2 : (19)
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n 2 3 4 5
LS™ 4 128 4,992
Old Bound [1] 2 4 - 16 256
New Bound (exp. (16) ) 8 64 1,536 1,099,776
New Bound (exp. (17)) 8 64 1,920 1,157,568
Exact Number 8 64 4,128 27,522,560

" Table 1 : Exact number of functions satisfying SAC versus the derived lower bounds.
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This short paper reports an interesting property of the difference distribution table of
an S-box or substitution box, which has been discovered by the authors while studying rela-
tionships between differential and other cryptographic characteristics of an S-box. Namely,
an n X m S-box is regular if and only if the sum of the entries in a column in the difference
distribution table of the S-box is 227~™,

Denote by V,, the vector space of n tuples of elements from GF(2). Ann xm S-box is a
mapping from V,, to V., ie,, F = (f1,..., fm), where n and m are integers withn 2 m = 1
and each component function f; is a function from V, to GF(2) (or on V), for short).

The Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order 2™, denoted by
H,, is generated by the recursive relation

H, = Hyy Hpe ,n=12,..., H=1.
Hn—l —iin-—] ]

Each row (column) of H, is a linear sequence of length 2.

In cryptography we are mainly concerned with regular S-boxes. An S-box F' = (f1,..., fm)
is said to be regular if F'(z) runs through each vector in V;;, 2"~™ times while z runs through
Vn once. It is well-known that a regular S-box can be characterized by the balance of the
linear combinations of its component functions. The following is a re-statement of Corollary
7.39 of {1]:

Lemma 1 Let F = (fi,..., fm) be a mapping from V,, to V,, where n and m are integers
withn 2 m 2 1 and each f;j(z) is a function on V,. Then F is regular if and only if every
non-zero linear combination of fi,..., fm, f(z) = @1, ¢;f;(x), is balanced.

Now we introduce three notations: k;(c), A;(c) and n; associated with F = (f1,..., fm)-
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Definition 1 Let F = (f1,...,fm) be an'n x m S-boz, a € V,,, § = 0,1,...,2™ — 1 and
B; = (b1,...,bm) be the vector in Vy, that corresponds to the binary representation of j. In

addition, set g; = @y bufu be the jth linear combination of the component functions of
F. Then we define

1. k() as the number of times F(z) @ F(z @ a) runs through B; € Vi, while z runs
through V, once.

2. Aj(a) as the auto-correlation of g; with shift o.
3. m; as the sequence of g;.
Using the three notations we introduce three matrices in the following:

Definition 2 For F = (f1,..., fm), set

ko(ao) kl (ag) e kgm_l(ao)
ko(oa) ki(o1) ... kom_y(a1)
K - . . )
ko(agn_l) kl (a2n._1) e k2m_1(a2n_1) ‘
Ao (o) Aj(ag) ... Agm_y(ap)
Ao(al) Al (al) SN Azm_l(al)
D= )
Ao(azn_l) Al(azn_l) e Agm_l(agn_l)
and .
{no, £o)? (M, lo)®> -+ (mam_1,£0)?
(n0,41)* (m, )% - (mam_y,f1)?
P= : ,
(o, €on1)® (1, 8an—1)% -+ (mom_1,fon_1)?

where Z; is the ith row of H,, 1 = 0,1,...,2" — 1. The three 2" x 2™ matrices K, D and
P are called difference distribution table, auto-correlation distribution table and correlation
immunity distribution table of the S-box F respectively.

In designing a strong S-box, many cryptographic criteria should be examined not only
against component functions, but also against their linear combinations. Such criteria in-
clude those related to nonlinearity, propagation characteristics and difference distribution
tables. The matrix K characterizes the differential characteristics of an S-box. The ma-
trix D indicates the auto-correlation of all linear combinations of the component functions.
While the matrix P represents the inner product between the sequence of each linear com-
bination of the component functions and each linear sequence. P is helpful in studying
the correlation immunity, as well as the nonlinearity, of each linear combination of the
component functions (see [2]).

As one immediately expects, the three matrices K, D and P are closely related. In
particular the following result has been proven in [4]:

Theorem 1 Let F = (f1,..., fm) be a mapping from V,, to Vi, where n and m are integers
withn 2 m 2 1 and each f;(x) is a function on V,. Set g; = @I cyfu where (c1,...,cm)
18 the binary representation of integer j, 7 =0,1,...,2™ — 1. Then
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(i) D= KHp,
(ii) P = H,D,
(iii) P = Hp K Hyp,.

Using Theorem 1, we now show that a regular S-box can be completely characterized
by its difference distribution table.

Corollary 1 Let F = (fi,..., fm) be a mapping from Vy, to Vi, where n and m are integers
with n 2 m 2 1 and each f; is a function on V,. Then F is regular if and only if the
sum of a column in the difference distribution table is 2°*™™, i.e., Yoacv, kila) = Q2n—m
i=0,1,...,2™ — 1,

Proof. Compare the first rows in both sides of the formula in (iii) of Theorem 1,

(Y Ko@), S kila),..., Y kam_1(0))Hm = ({n0,£0)?, (m, &0)>, .- ., (mem_1,£0)?). (1)

aEVy acVy, a€Vy
Obviously, if ey ki(e) = 2™, i = 0,1,...,2™ — 1. then (n1,4)? = --- =

(nom_1,£0)%2 = 0. Note that £ is the all-one sequence of length 2". Hence g1, ...,gom 1 are
balanced, where g;,...,gom_1 are defined in Theorem 1. By Lemma 1, F is regular.
Conversely, suppose F is regular. By Lemma 1, g;,...,¢99m_1 are balanced. Hence
(n,40)? = -~ = {mam_1,£)% = 0. Note that (no, £o)? = 22*. Rewrite (1) as
2m( Z kO(a)a Z kl(a)7 R Z k2m—l(a)) = (2271,, 0,... 30)Hm
acVy, a€Vn a€Vn
This proves that 3¢y, ki(e) =22""™ 1=0,1,...,2m — 1. o

Corollary 1 has also been obtained independently by Tapia-Recillas, Daltabuit and
Vega [3]. '

The following corollary shows the uniqueness of the first column of the difference distri-
bution table of a regular mapping.

Corollary 2 Let F = (f1,..., fm) be a mapping from V,, to Vi, where n and m are integers
withn 2m 2 1 and each f; is a function on V,,. Then F is regular if and only if the sum
of the leftmost column s 22"™  i.e., ey ko(a) = 2207,

Proof. Multiply both sides of the equality in (iii) of Theorem 1 by e where, e denotes the
all-one sequence of length 2™. Hence we have

ko(ax) k() ... kom_1(on0) 2m [ z;&l(m, £y)?
ko(cu) k(o) ... kem_y(on) 0 Yoo Hmi4)?
n . . = .
ko(azn_.l) kl(agn_l) . kgm_l(agn_]_) 0 ] ?:()_1<nj,£2n_1>2
and hence
ko(ao) 2’:_1(77_7'7‘80)2 ]
ko(a 2" L 00)2
o 0(. 1) _ 250 .(779 1) @)
ko(an—1) Y25 mjy ben—1)? |
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Compare the two sides of equality (2), obtaining

9n1 om_1
2™ Y kolas) = Y (mj, o)”. 3)
1=0 7=0

Since go is the constant zero, 7o is the all-one sequence of length 2" and hence (19, 4y)? =
22n

If 3 qev;, ko(e) = 22"~™ hen from (3), (m, %)% = -+ = (mam_1,40)% = 0. Note that £
is the all-one sequence of length 2". Hence g,...,gom_; are balanced, where g;,...,gom_;
are defined in Theorem 1. By Lemma 1, F is regular.

Conversely, if F is regular, then by Corollary 1 Yoev, ko(a) = 22n=™, O

From Corollaries 1 and 2, we conclude that (1) an S-box is regular, (2) the sum of the
first column in its difference distribution table is 227~™, and (3) the sum of each column in
the difference distribution table is 227~™ are all equivalent statements.
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