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1. Introduction
Much of the security of a block cipher based on the Feistel network [8, 9] depends on the

properties of the substitution boxes (s-boxes) used in the round function. Although many
desirable properties have been studied, relatively little work has been done to determine to
what degree these properties are achievable in practice. This paper presents one effort to
construct large, cryptographically secure s-boxes, contrasting theoretical and practical

limitations, and highlighting areas for future research.

2. Background

An nXxXm s-box S is a mapping S:{0,1}" — {0,1}". S can be represented as 2" m-bit
numbers, denoted Tos -ty » 10 Which case S(x)=r,, 0<x<2" and the r, are the rows of
the s-box. Alternatively, S(x)=[c, (%) ¢, (*) ... cé(x)] where the ¢, are fixed Boolean
functions ¢;:{0,1}" — {0,1} Vi; these are the columns of the s-box. Finally, S can be
represented by a 2" xm binary matrix M with the i, j entry being bit j of row i . All three

representations will be used in this paper.

The linear combination of two functions f,g:{0,1}" — {0,1} is defined to be

(f @ g)(x)=f(x)® g(x)

where @ denotes modulo 2 addition. Let V, denote the set of functions mapping
{0,1}" = {0,1}. Let L, denote the set of linear functions mapping {0,1}" — {0,1}. Let A,

denote the set of affine functions mapping {0,1}" — {0,1}.

The following definitions will be useful in the discussion.

2.1 Walsh Transform
The Walsh transform of a function f:{0,1}" — {0,1} is defined by

Whw)= Y (~HI O™

x€{0,1}"
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where w-x=w, x,_ @ --®w;x, (note that the transform is usually normalized by

multiplying by 27%).

The set of bent functions, denoted B, with » even, is the set of functions f:{0,1}" — {0,1}

such that [14]

WP (w)=+2"? Ywe {0,1}".
2.2 Inverse Walsh Transform

The inverse Walsh transform of a function F:{0,1}" — Zis

?(/'I(F)(x)=j2-1—- ZF(W)(—I)“'"‘.

n
we{0,1}"

2.3 Nonlinearity

The nonlinearity of a function f:{0,1}" — {0,1}is

nl(f):min wi(f @)

leA,

where wt() denotes the Hamming weight of the function.
The nonlinearity of an s-box S is
nl(§) = r;lelg nl(f)
where C is the set of all nontrivial linear combinations of the columns of S.

2.4 XOR Table
Let o € {0,1}" \ {0}, B € {0,1}. The XOR table entry of an s-box § corresponding to (o.,B)
is
XOR(0.,B) =#{x € {0,1}":5(x) ® S(x ® .} = B}
where # denotes the cardinality of the set. The XOR value of an s-box is the highest XOR
table entry:

XOR(S) = m%x XOR(a,B).

‘2.5 Dynamic Distance

We define the dynamic distance of order j of a function f:{0,1}" — {0,1} as follows:
1 2"-1
DD;(f)= max =" - f(x)® f(xDd)|.

de{o,1}"
1sevfz:(d})s j 2 x=0
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It provides a measure from which can be defined other dynamic properties such as the strict
avalanche criterion, bit independence criterion, and a precise “distance” from these

properties.

2.6 Strict Avalanche Criterion (SAC)
A Boolean function f:{0,1}" — {0,1} satisfies the SAC if DD,(f)=0. The distance to SAC

is defined by DSAC(f)=DD,(f). Similarly, f:{0,1}" — {01} satisfies higher-order SAC
(HOSAC) of order j if DD;(f)=0 and the distance to higher-order SAC of order j is
defined by DHOSAC (f)=DD;(f). Maximum order SAC (MMOSAC) and the distance to

maximum order SAC (DMOSAC) correspond to the case j=n. The concepts of SAC,
higher-order SAC, and maximum order SAC coincide with those of [4, 15] (see also [13]).
An s-box satisfies the (HO, MO)SAC if all of its columns satisfy (HO, MO)SAC.

2.7 Bit Independence Criterion (BIC)
For an s-box S, the distance to higher order BIC is defined by

DHOBIC, ;(S) = Igzgﬁn DD;(Mc)

I<wt(c)<i
where M is the binary matrix corresponding to S and the matrix multiplication is done using

modulo 2 addition. S satisfies BIC! [15] if DHOBIC,,(S)=0 and satisfies HOBIC,; if
DHOBIC, ;(5) =0 (note that HOBIC can be defined in terms of varying i, or varying j, or
both). Distances to BIC and HOBIC are given by DHOBIC,,(S) and DHOBIC, ;(S)
respectively. Maximum order BIC (MOBIC) and the distance to MOBIC (DMOBIC)
correspond to HOBIC and DHOBIC with i =m, j=n.

2.8 Ideal S-Box Properties
The following are properties which we feel that an ideal s-box would possess:

I1. All linear combinations of s-box columns are bent.

12. All entries in the s-box XOR table are O or 2.

I3. The s-box satisfies MOSAC.

I4. The s-box satisfies MOBIC.

I5. The set of weights of rows has a binomial distribution with mean m/2.

! The (output) Bit Independence Criterion (BIC) states that s-box output bits j and k should change independently
when any single input bit { is inverted, forall i, j, and k (note that for a given i , j, and k the independence is
computed over the set of all pairs of input vectors which differ only in bit i ).
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16. The set of weights of all pairs of rows has a binomial distribution with mean m/2.

I7. The columns each have Hamming weight 2",
Property I1 will aid in protection against linear cryptanalysis (see [5]), and I2 against

differential cryptanalysis (see [6]). Properties I1, I5, and I7 help to ensure a good static
characteristic, and properties 12, I3, 14, and 16 help to ensure a good dynamic characteristic.

Not all of these properties can be achieved simultaneously.

3. General S-Box Construction Methods
We observe the following properties of s-boxes:

3.1 Property S1 v
The nonlinearity distribution of an s-box is not affected when affine functions are added to

columns of the s-box.

Proof:
This follows directly from the definition of nonlinearity.

3.2 Property S2

max XOR(a,B) for an s-box S is not affected when affine functions are added to the
oe{0,1}"\{0}
Befo1)"

columns of S.
Proof:
Let b(x) be a column of S, I(x)be a linear function, & € {0,1}, and y(x) = I(x) +8 be an
affine function. Let h(x) = b(x) @7 (x) be the s-box column modified by adding an affine

function.

For a given input XOR o, the output XOR at the bit position corresponding to column

b(x) for the modified s-box is:

Mx)Qh(x@a)=b(x) @Y (x)Db(xDP)DY(xD )
=b(x)@b(xD0) DY (x) @Y (x)®I(0) (since y(x)is affine)
=h(x)@b(xD)DI(cn) .

Thus for a given input XOR, the output XORs with the modified column are the output
XORs of the original s-box, except that each is XORed with the constant /(o) at the bit




position corresponding to b(x). Therefore, the number of output XORs B which

correspond to a given input XOR o is unchanged.

3.3 Property S3
Dynamic distance is unaffected by the addition of affine functions.

Proof:

Let f:{0,1}" = {0,1} be a Boolean function. Let y(x)=I(x)+08 be an affine function.
Let h(x) = f(x) @7 (x).

2"-1

27 =Y fN®F(x®0)

x=0

1

For a fixed input change ¢, let B= 0 be the dynamic distance of

f corresponding to that input change and T be the summation term. The dynamic

distance of the modified function is given by

on-l _ T|

a1 2"-1
%2"—1 =Y h(x)®h(x®c) =-;*2"‘l Y FXOYXOF(x®c)DY(xD0)
x=0 x=0
2"-1
zézn-l ~ 2ROV O f(x®) DY (1) D)
x=0
=%2"’1 —gf(x)(-af(x@c)@l(c)
x=0
1
2
B

where the second to last equality follows because I(c) is a constant with respect to the

summation. If I(c) =0, the result is immediate. If I(c) =1,

2"-1

2" =N F()® f(x®c)®U(c)

x=0

2"-1
=R - RO f(x® @1

x=0

' 2"
=2 -[2" -y fme f(x@c)J

x=0

2" ~1

=2+ Y FD @ fF(x®0)

x=0

= [ —T|.
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3.4 Property S4
The distances to (HO, MO)SAC and to (HO, MO)BIC for an s-box are not affected when

affine functions are added to its columns.
Proof:
This follows directly from Property S3.
Properties S1-S4 show that an s-box with high nonlinearity, low distance to BIC, and a good

XOR table can be modified by adding affine functions to the columns without disturbing

these properties.

We will now focus on the case n=8, m=32, the dimensions typically used in CAST
algorithms [1, 2]. Property Il cannot be achieved for 2m>n [12]. Il is then replaced with
I1’: the s-box has the highest possible nonlinearity. Property 12 can be achieved without
much difﬁculty because m is sufficiently greater than n; ideal XOR tables for the s-box
dimensions given have 2"'.(2" -1)=32640 entries containing 2 and all other entries 0.
Property I3 is guaranteed if bent functions are chosen for the c¢,. Property I4 cannot be

achieved for 2m>n [12]. We have reduced 14 to I4’: the s-box minimizes DHOBIC,, ;.

This leads us to construct s-boxes using bent functions as columns (Property I3), and

emphasizing only nonlinearity and HOBIC,,, (properties I1° and I4’). Once complete, the

s-box can be inspected to see that it satisfies property 12, and can be modified by ‘adding
affine functions to columns to approximately obtain properties 15 'and I6. Note that with
n =38, the bent functions have Hamming weight 120 or 136, which is close to the weight 128
required by property I7. These constructed s-boxes, therefore, represent what appears to be a

good approximation to our definition of ideal s-boxes of these dimensions.

3.5 S-Box Construction Algorithm
The following construction algorithm (Alg. 1) was used:

1. Set ncols=0.
2. Load a bent function into column ncols of the s-box.

3. Test the nonlinearity and DD, of all combinations of columns 0-rncols that involve column
ncols .
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4. If the minimum nonlinearity observed is greater than or equal to the minimum desired
" nonlinearity and the highest dynamic distance observed is at most the maximum allowable

DHOBIC,, , , increment ncols .

5. If ncols <32 go back to step 2.

The following algorithm (the lazy counting algorithm) can be used to generate combinations
of columns. It generates all 2™°* combinations of ncols+1 columns involving ¢, as

needed in step 3 of the algorithm above. In addition, only one XOR operation is required to

generate the next combination whose nonlinearity and DHOBIC, , are to be tested.

1. Set f=c,-
2. Test the nonlinearity of f .

3. Fori=1 to 2™ —1

a) Find the least significant bit of the binary representation of i which is 1. Let b be the
associated bit position number.

b) Set f =f®cb' (fnew =fprevious ®Cb)
¢) Test the nonlinearity and DHOBIC,,, of f .
4. Constructions of Bent Functions
The method of s-box generation proposed in the previous section requires a set of bent

functions. Several construction techniques are known [7] (see also [3, 10, 13]). The ones

which we used are described below.

4.1 Generation from 6 input bent functions:
Given a set of bent functions in B, bent functions in By can be constructed using either of

the following two methods:

4.1.1 Method 1: :
Let a,b e B,. Then the function £:{0,1}* — {0,1} defined by

a(xs...xy), xg =0,x;, =0
oz )= (X5 X)), x=0,x; =1
.- %o) b(xs...%y), = xg=Lx,; =0

b(x5...%5) @1, x5=11x; =1
is bent [3]. Rearrangements of the 64 bit blocks in the expression above also result in bent

functions.

67




4.1.2 Method 2:

Let a,b,c € By and let A, B, C be their respective Walsh Transforms. If

A(ws...wp), wg =0,w; =0
B(ws...wy), we =0,w; =1

D(w;...wy) =
(ws..-wo) C(ws...wy), wg=1w, =0

=27 [A(ws.... w) B(ws...w)C(ws..w) [, we=Lw, =1

represents the Walsh transform of a function d:{0,1}" — {0,1} then 4 is bent [13].

4.2 Maiorana Functions

Let m(x) be a bijective mapping from {0,1}"”* — {0,1}"”*, g(x) be a function in V,,,, and x,
and x, denote the high n/2 and low n/2 bits of x respectively. Let the - operator denote
the dot product [a,, @, - o] Bt Baraa - b0 ]= upa-iburnct @ Anpgbupp s ® - Baghy .
Then the function f eV,:f(x)= f(xy,x;) =1t(xH)-xL:€-) g(xy) with n even is bent, and is

called a Maiorana function [7, 10].

4.3 Properties of Bent Functions Constructed by Method 1

A set of 100000 functions, f;... foe0 , Was generated using Method 1. For random, distinct,

i, j€{0,1,...,99999}, the nonlinearity of f, ® f ; Was calculated. The following chart shows

the resulting nonline'arity distribution.

Nonlinearity Distribution for Pairs of Bent Functions Generated by Method 1

Frequency (%)

W N O N ¢ © ©
o o O O O O O
- o e e e

110
112
114
116
118
120

Nonlinearity
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Two similar distributions are present. The lower one corresponds to nonlinearities divisible
by 2 but not by 4, and the upper to nonlinearities divisible by four. This set of functions has
the greatest nonlinearity spread of all those considered in this paper. In our experiments, it
was found that it is possible to build 8 x 25 s-boxes with nonlinearity 80 and 8x29 s-boxes
with nonlinearity 76 with columns in this set. ‘The minimum nonlinearity of a pair of

functions was 52.

The set of functions was filtered by taking only groups of 4 functions forming 8x4 s-boxes
with nonlinearity at least 100. It was hoped that if one function from a group of four had high
nonlinearity when added to each member of a set of functions, the other functions in that
group would also have high nonlinearity with respect to that set. Experimentally, it was

found that such filtering did not support this hypothesis.

S-Boxes having more than three columns and built with functions constructed by Method 1
have a DBIC value of 64, the worst (highest) possible.. This can be observed as follows. Let
a,, b, and a,, b, be the truth tables corresponding to two pairs of bent functions in B,. Let
(a,,a,,b, ®a,b, ®B) and (a,,a,.b, ®x,b, ®3) be elements of By constructed by Method
1, where exactly one of o, B € {0,1} is 1 and exactly one of %,8 €{0,1} is 1. The linear
combination of these two functions is (a, @a,, a, @ a, ;bl @b, 0Dy ,b,®b,®B @6)‘
which achieves a DBIC of 64 for an input change of 01000000 (binary) because the resulting
change vector is: |
(a,®a,®a,®a, ,b®b, 80O Db, ), ©p@8)=(0,00S®Pp®J)
=(0,0).

This argument is valid for any rearrangement of the 64 bit blocks provided that both afe
rearranged in the same way. Thus, an s-box with columns constructed using Method 1 will

have a DBIC of 64 if any two columns have the same block arrangement (ignoring

complementation). Because there are only three distinct rearrangements, the result follows.

4.4 Properties of Maiorana Functions

For randomly generated pairs of Maiorana functions m(x), p(x) with g(x)=0, the

nonlinearity of m@® p was calculated. The resulting nonlinearity distribution follows:
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Nonlinearity Distribution for Pairs of Maiorana Functions (g(x)=0)

Frequency (%)

T @0 © O o ¢ O o©
o o o o
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120

Nonlinearity

The fact that the nonlinearity of linear combinations of Maiorana functions is divisible by
2"*7" is explained in [11]. In our experiments, we found that Maiorana functions cannot be
used to generate s-boxes larger than 8x17 of nonlinearity greater than 80 with Alg. 1. The

lowest nonlinearity observed for a pair of Maiorana functions was 64.

Let a,b,...,h be a permutation of 0,,...,7. Then it is easy to show that the function
f(xq...x5) = f,,(x,...x,), where f, () is a Maiorana function, is also bent. We will refer to

these functions as Maiorana functions with permuted inputs. The nonlinearity distribution of

pairs of these functions follows:

Nonlinearity Distribution for Pairs of Maiorana Functions with Permuted Inputs

Fraquency (%)

N ¢ © O O o © 0 O N W O OO N Y O OO N 9T WO < o T @
- R e s 229
Nonlinearity
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With this set of functions, our experiments generated s-boxes with nonlinearity 76 of size
8x30. This is the largest s-box of nonlinearity 76 or greater that was generated from any
single set of functions described in this paper. With a nonlinearity of 80, the dimension
8x 25 could not be exceeded using our pool of functions. The lowest nonlinearity observed
for a pair of Maiorana functions with permuted inputs was 82, the highest of all sets

considered here.

Bent Functions in S-Box Design
Experimentally, it was found that 8x32 s-boxes with nonlinearity 74 were best constructed
by the following method:
1. build an 8x29 s-box with nonlinearity 76 from bent functions generated by Method 1
2. Append two Maiorana functions with permuted inputs, keeping the s-box nonlinearity at 76
3. Append a Maiorana function with permuted inputs, reducing the s-box nonlinearity to 74
Using this technique, construction of a single s-box takes 15 to 30 days on a Pentium 90.

However, the computation can readily be distributed across many computers, reducing the

construction time to a few hours.

The following chart shows a typical distribution of nonlinearities of all combinations of the

columns of an s-box with nonlinearity 74 generated by the method described above:

Nonlinearity Distribution for an 8x32 S-Box with Nonlinearity 74
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We observe that the nonlinearity of most linear combinations is much higher than 74. Only
17 linear combinations have nonlinearity 74, and 571 have nonlinearity below 80 (out of 2%
possible combinations). However, no 8x 32 s-boxes with bent functions as columns with

nonlinearity 76 or above have yet been found using this construction method.

Improvements on the Construction Algorithm

The algorithm described so far simply discards columns which do not have the desired
minimum nonlinearity with respect to any combination of columns already in the s-box.
Although this method works, it is disturbing that until the technique has found a new column,
it is no more likely to find a suitable column than it was immediately after locating the
previous one. The following development leads to an improvement over this situation which

could possibly be exploited further.

Below is a plot of the number of times a particular s-box column is included in a linear

combination having nonlinearity less than 80 during the construction process.

Number of Times a Specific Column is involved in a Low Nonlinearity Combination

Number of Invelvements

Column Number

From the graph, it is clear that low nonlinearity cannot be attributed to a few s-box columns.

We next consider the number of times specific combinations of columns are involved in low
nonlinearity combinations. An 8x10 s-box of nonlinearity 80 was constructed, and the

number of times a combination of these 10 functions when combined with an eleventh bent




function resulted in a nonlinearity under 80 was recorded. This was repeated three times. A

summary of the results follows:

Exp. 1 Exp.2 | Exp.3
Number of functions tested 200393 | 18259 | 5908
Combination producing low nonlinearity most often (lazy counting algorithm counter value 127 15 31
given)
Maximum number of low nonlinearities caused by a single combination 63 633 2 533 1058
Percentage of low nonlinearities caused by a single combination 31.8 13.9 17.9
Total number of combinations having generated a low nonlinearity (out of 1024) 115 328 208
Number of combinations which generate low nonlinearities in all experiments 36
Number of combinations which generate low nonlinearities in last two experiments 162

We observe that up to 30% of columns could be rejected by performing a nonlinearity test
with a fixed combination of the existing s-box columns. Because the combination to be
checked differed for all three experiments, the construction algorithm would need to
determine the combination which most frequently is involved in low nonlinearities. This is
difficult because the full nonlinearity test must be completed even if it is already known part
way through the test that the nonlinearity of the s-box with the function being considered is

lower than the minimum required.

6.1 Effective Use of Combinations and Subspaces

We now consider an s-box nonlinearity test which checks first that a candidate function has

the desired nonlinearity with respect to

1. all combinations of columns not involving the most recently added one
2. all combinations of columns involving the most recently added one.

Suppose that two candidate functions f and g complete part 1 successfully and fail part 2.
Then if the function f ® g passes part 1, the most recently added column can be replaced
with f and g can be added to the s-box. Verifying thr;lt f ©® g passes part 1 involves only
half the effort required to verify that a new candidate function passes both parts 1 and 2. This
scheme has been implemented and causes a noticeable decrease in the time required to find
columns for large s-boxes. The method could be extended, for example, to save time when
three functions have the desired nonlinearity for all combinations not involving two specific

columns of an s-box.
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6.2 Calculating the Nonlinearity of Functions
The speed of s-box construction is greatly dependent on the time required for a nonlinearity

calculation. The nonlinearity of a function f can be computed using:

nl(f)=2"" -1 max |7/(f)(w).
2 we{0,1}

The Walsh transform of f can be calculated by multiplying the truth table of (—1)"® bya

Hadamard Matrix of order ». This matrix is defined recursively by:

Hy=1

H — Hn—l Hll—]
" H _Hn—l .

n-1

Let f[a...b] represent the truth table of (—1)’ for inputs between a and b inclusive. The

A+ B
equation H,f[0...2" ~1]= [A B} , Where A = Hn_lf[O....Z"“ -1} and B = H,,_lf[z"“...Z" -1,

can be used to efficiently calculate the Walsh transform. In our current implementation,

H,f is calculated by table lookup. ‘In the final stage of the recursion, |A|+|B| is computed
instead of A+B and A-B in view of the maximization specified in the formula for
nonlinearity.

The improvements described in 6.1 and 6.2 combine to give a nonlinearity calculation
requiring approximately 100us on a Pentium 90 (roughly 30-50 times better than a naive

implementation of the nonlinearity calculation).
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7. Conclusions
The following table summarizes the properties obtained for 8Xx32 s-boxes constructed

according to the methods described in this paper and for random 8 X 32 s-boxes:

Property Random S-Box Constructed S-Box

I1°. Nonlinearity - 72 74

I2. Largest XOR table entry 2 2

I3. DMOSAC 17 0

14’. DHOBIC,;, , 37 36

I5. Row weight distribution | Approximately binomial | Approximately binomial
I6. Row pair distribution Approximately binomial | Approximately binomial
I7. Average column weight 128 128”

*  See [16]

** Half the columns have weight 120 and the other half have weight 136

The constructed s-boxes are equivalent to random s-boxes with respect' to properties 12, IS,
and 16, and are superior to random s-boxes with respect to properties I1°, I3, and I4°. It is
therefore conjectured that using constructed s-boxes in CAST-like ciphers will increase
. security (compared with the use of random s-boxes). Note that although improvements in

nonlinearity and DHOBIC,,, seem minor (74 vs. 72 and 36 vs. 37), it has so far proven
impossible to construct 8 x32 s-boxes with nonlinearity greater than 74 or DHOBIC,, ; less

than 36, and has, on the other hand, been almost trivial to construct 8x32 s-boxes with

nonlinearity less than 74 or DHOBIC,, | greater than 36. Thus, these “minor” improvements

may in fact rep‘resént significant advances in terms of s-box strength (especially considering
that property I3 is so much improved and properties 12, IS, and I6 are not degraded). Also,
the construction time for an s-box is only about twice the time required to find the
nonlinearity and DBIC for a given s-box. Construction would then typically be advantageous
over random generation if the probability of a randomly generated s-box having
unsatisfactory nonlinearity or DBIC is not negligible. In most cases, the increase in security

would justify the extra time required for construction.

The creation of large, cryptographically good s-boxes with bent functions as columns has
proven more difficult than originally expected, although extensive experimentation (as

summarized in this paper) has given rise to a method which appears to produce satisfactory
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results. The current algorithm takes between 15 and 30 days on a Pentium 90 for an 8x32

s-box with the properties listed in the table above, and each additional column would cause

the generation time to double. However, the process can readily be distributed over a number

of computers to significantly reduce the time required.

Finally, the concept of dynamic distance presented here defines a quantitative measure of

how close an s-box is to satisfying dynamic properties such as SAC, BIC, and their higher

orders, and provides an intuitive, unified framework for these properties.
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Abstract: In this paper, we examine the avalanche characteristics of private-key block ciphers
constructed using a DES—like architecture. Avalanche is a desirable cryptographic property that
is necessary to ensure that a small difference between two plaintexts results in a seemingly ran-
dom difference between the two corresponding ciphertexts. In order to examine the behaviour
of DES-like ciphers in relation to the avalanche property, a model of the cipher is developed
which allows us to analyze the avalanche characteristics of the cipher.for different cipher pa-
rameter values. In particular, the results suggest that large, symmetric S-boxes which satisfy
the guaranteed avalanche property are effective in combining efficiency and good avalanche

characteristics of the cipher.

I. Introduction

Private-key block ciphers are typically implemented as a product cipher, using a number of
rounds of substitutions and linear transformations. One such class of ciphers, introduced in [1]

and referred to as DES-like or Feistel ciphers, uses the general structure of the Data Encryption

Standard (DES) [2].

The concept of avalanche in block ciphers was informally introduced by Feistel [3] and Feistel,
Notz, and Smith [1], as the property of a small number of bit changes in the plaintext input
leading to an “avalanche” of changes in subsequent rounds resulting in a large number of
ciphertext bit changes. More precisely, in our analysis, we consider the following definition of

the avalanche criterion [4]:

Definition 1: A cipher is said to satisfy the avalanche criterion if, for all keys, on average, half

of the ciphertext bits change when one plaintext bit is changed.

Note that this definition is very similar to (but a little looser than) the strict avalanche cri-
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terion [5] which states that each ciphertext bit must change with a probability of exactly one
half given a particular one bit plaintext change. As a measure of a cipher's adherence to the

avalanche criterion we define avalanche probability.

Definition 2 : The avalanche probability, Pp,, of a cipher is the average fraction of ciphertext

bits that change when one plaintext bit is changed and the key remains fixed.

For a cipher which perfectly satisfies the avalanche criterion, I, = 1/2. The avalanche proba-
bility can be used as one measure of the performance of a cipher: the fewer rounds it takes for
the avalanche probability to converge to 1/2, the stronger the cipher (with respect to avalanche),

implying a cipher of more efficient construction consisting of fewer rounds.

In [4], the avalanche characteristics of basic subsﬁtution—permutation networks (SPNs) (which
are not DES-like) are modelled and the effect of varying cipher parameters are examined. In
this paper, we extend this work and develop a model of the avalanche characteristics of DES-
like ciphers. The value of this model is that it allows us to examine the relationship between
avalanche and various parameters of a DES-like cipher such as the amount of expansion and
the S-box dimensions and properties. As well, the performance of DES-like ciphers and the

basic SPN ciphers of [4] are compared.

II. Modelling the Cipher

As shown in Figure 1, an R-round DES-like cipher encrypts by dividing the N-bit plaintext
input block into two halves: left half L; and right half R;. ! The right half block R, is
transformed by the keyed round function f and XORed bit-by-bit to the left half block L to
form a new left half block. The right and left halves are then swapped. Consequently, for a
round #, 1 < ¢ < R of the cipher, letting L; and R; represent the left and right half-blocks,
respectively, and K; represent the key bits applied to the round function, the DES-like algorithm

may be viewed as the following iterated operation:

L =R,
R =L;® f(R;, K;). (1)

After the last round, since the half-blocks are not swapped, we have Rg41 and Ly represent-

'Note that the initial and final permmutations of DES have been ignored.
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Round Function

T ciphertext |

Figure 1: DES-like Cipher Structure

ing the left and right halves of the ciphertext, respectively.

As illustrated in Figure 1, there are generally three components in the round function f: the
expansion (E), the substitution (S), and the permutation (P). The cipher is keyed by applying
a subset of cipher key bits to the round function, typically by XORing with the data bits before

the substitution is performed.

(a) S-box Model

The substitution component operates by dividing the block into a number of smaller sub-blocks
and then replacing the bits of these sub-blocks according to a predefined mapping referred to
as an S-box. In this paper we consider S-boxes of dimension m x n, m > n, where m represents
the number of input bits and n represents the number of output bits. DES has eight 6 x 4
S-boxes which are used in the substitution component of the round function.

In general, we represent the input to an S-box as X = [X1 X... X, X; € {0,1}, and the output
79




as Y = [11Y5..Y,], ¥; € {0,1}. The input and output differences or change vectors of an S-box
corresponding to the bit-wise XOR of two different values for X and the bit-wise XOR of the

resulting two values for Y are represented by AX and AY, respectively.

We model the S-box in the cipher by treating the number of output changes of the S-box as
a random variable. Representing the Hamming weight operation by wt(-) and letting D =
wt(AY) represent the random variable corresponding to the number of output bit changes, the

model uses the probability distribution of D given by

1 ,wt(AX) =0
Pp(D=0) = { Tt wt(AX) > 1 ?
and
PrD=d)={ | »wi(AX) =0 ®)
p(D=d)= Ci?_ﬂf}i ;wi(AX) > 1
for1<d<n.

To understand the origin of (2), consider that there are 2™~ times more input change vector
values for AX than output change vector values for AY. Hence, we expect a particular value
of the output change vector to occur 2™~" times more often than an input change vector value.
Clearly, if there are no input bit changes, then there are no output bit changes resulting the
probability of 1 in the first case of (2). The remaining 2™~ — 1 occurrences of the all-zeros
output change vector can be expected to occur when there are input bit changes. Since there
are 2™ — 1 non-zero input changes, the probability of a zero output change given an input

change is given by the second case of (2).

Consider now the derivation of the probability distribution of D for D > 0 as given in (3).
The first case arises from the fact that if there are no input changes, then there are no output
changes and Pp(d) must be zero. If there is an input change, as in the second case, then the
total number of possible output changes corresponding to a weight of d is given by the number
of selections of the d changes from the n output bits multiplied by the factor 2™~ to account
for the ratio of possible inputs to outputs. This is divided by the total number of non-zero

input changes given by 2™ — 1.

Note that this stochastic model of the S-box is not intended to characterize the behaviour of

an actual, physically realizable S-box, but rather represents an aggregate behaviour over all
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randomly selected S-boxes. In this sense, it represents a typical S-box.

(b) Permutation Model
The permutation component transposes the bits within the block. In DES, the 32-bit permu-
tation has the property that no two outputs of an S-box are connected to the input of the same

S-box.

To model the permutation component of the round function we represent the permutation by
a random variable where all possible permutations are considered equally likely. Hence, this
model does not make any assumptions about the permutation properties. Instead, we model
the cipher by averaging over all possible values that the permutation component can take on.
Therefore, it is quite reasonable to expect that a well chosen permutation might display better
characteristics than the averaging model used for the analysis. However, in general, the analysis
of specific permutations is very difficult and, since the permutation depends greatly on the block
. and S-box sizes, it is not clear how to generalize an optimal permutation for the purposes of

our model of DES-like ciphers.

(c) Expansion Model

The expansion component duplicates an appropriate nmumber of input bits before they are
presented to the substitution component and is required if asymetric m x n S-boxes with m > n
are used. The expansion factor, e, of the round function is given by the ratio of the number of
bits entering the substitution component to the block size at the input of the round function.
In DES, the round function input is 32 bits and the substitution takes 48 bits as its input.

Hence DES has an expansion factor of a = 1.5.

In our model of the avalanche characteristics of DES-like ciphers, we treat the expansion as a
random variable and average over all possible values of the random variable. It is assumed that
o is fixed and the expansion randomly selects the appropriate bits for duplication from the set
of all bits entering the round function. For example, for the parameter values of DES, 16 out of
32 bits are arbitrarily selected as the set of duplicated bits. The model updates the avalanche

characteristics based on averaging over all possible selections for those 16 bits at each round of
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the cipher.

III. Computation of Avalanche

In this section, we detail the computational model that is used to examine the avalanche
characteristics of a cipher of IR rounds. Since the avalanche probability is calculated iteratively
from 1 to R rounds, ciphers may be analyzed in relation to their satisfaction of the avalanche
criterion as a function of the number of rounds. Note that in the following development the

key is assumed fixed and, hence, is not a factor in the computation of avalanche probability.

Consider the determination of the distribution of the number of bit changes at the input to a
round given the distribution of the number of bit changes at the input to the previous round.
Let 7, and 7k represent the number of bit changes in the left and right half blocks, respectively,
at the input to a round z", i.e., n;, = wt(AL;) and ng = wt(AR;). Using the total probability
theorem, the probability of 4} and 7}, bit changes in the left and right half inputs to round

1+ 1 is given by
N/2 NJ2

Pli.mr) =Y Y. POi.0klnc.mr) - Plor.nr). 4)
71,.=079gp=0

Since, in a DES-like structure, 7 = 5g, this can be simplified to
1, = TR,
N/2

P(ni,mp) = Y Plklor.ne =u%) - P, mr =1}). C(5)
nr.=0

Let 75 represent the number of bit changes at the output of the round function. Then

N/2
P(nglnr,mr) = Y Plklnr.nr.n5) - Plaglar. mr)- (6)
77=0
Since 7% is determined directly by 77, and 75, and 7¢ is not affected by 77, we have

N2
P(oglnr.mr) = Y P(niln.ny) - Ploglng). (7
ng=0

Let p = maz(qr,75) and X = min(nr, 7). Now P(7]§|1",,1]f) can be determined from

As

x T MR =0L+n5— 2
P(yging.ny) = (.w/_») MR = 1L+ 7f @®)

A

(’f). Nf2wpn
[

0 ,otherunse
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for all 7, 0 < 7 < A. To understand the origin of (8), consider the general bit-wise XOR of two
random b-bit vectors: w = u @ v where 7,, = wi(w), 1, = wt(u), and 7, = wi(v). Without loss
of generality, assume that 7, > 7, and that the first #,, bits of u are ones and the remaining bits
are zeroes. Consider now the placement of the ones in the vector v and the effect on the vector
w. If 7 ones of the 7, ones of v are located in the first 7, bits of v, the vector w will have 7, -
ones in the first 7, bits and 7, — 7 ones in the remaining bits. Hence, 7y, = 7, + 1, — 2¢. The
probability of n,, = 7, + 7, — 21 given 7,, and 1, is determined as the fraction of arrangements
of 1, oﬁes for which ¢ ones are in the first #, bits and the remaining 7, — ¢ ones are in the

remaining b — 17, bits. Equation (8) is derived by letting b = N/2, 5, = p, 7, = X, and 7, = 5.

Consider now the probability of the number of output bit changes given the number of input
bit changes to the round function, P(ns|ng). Let 7. represent the number of bit changes at the
" output of the expansion and let [ represent the number of S-boxes which have at least one bit

change at the input. Using total probability and the chain rule, it can be shown that

T M
P(nglnr) = D> 3 Plagll) - P(lne) - P(nelr) 9)
7]¢;=0 =0
where T represents the number of bits at the output of the expansion component and M is the

number of S-boxes in the substitution component. Hence, T' = o - (N/2) = M - m represents

the number of bits entering the substitution component.

The probability distribution of the number of changes at the output of the expansion given the
number of input changes is given by
T-N/2\ ( N-T
(’k""’lR) (27”-2—770)
N/2
(%)

where we have assumed that 7' < N. The first term in the numerator represents the number of

P(nelnr) = (10)

selections of extra bit changes in the expanded vector from the bits that have been duplicated by
the expansion function. To compute the number of arrangements of 7, bits from ng bit changes
at the expansion input, this is multiplied by the number of selections of the remaining bit
changes in the expanded vector from the bits in the round function input which have not been
duplicated. The probability is then calculated by dividing the number of suitable mméements

by the total number of selections of n7g bits from the round function input of N/2 bits.
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The probability P(I|5.) is the probability that I S-boxes are affected by changes given that
there are 7. changes at the output of the expansion component. This can be determined by
computing the fraction of the number of selections of 7, bit changes that affect only ! S-boxes.
Letting N (7.) represent the total number of selections of 7, bit changes and N (1,7e) represent

the number of selections that have bit changes at the input to I S-boxes, we get

P(line) = N(l, Ue)/N(ﬂe) (11)

where

N("?e)=(;§;)- : (12)

From Lemma 2 in [4], M(l,7.) may be determined by

M . .
N(l,’l]e) = Z (_l)i—(.M—l) ( Mz—l ) ( ]:'4. ) ( (M ;i)‘ln ) ) (13)

i=M-I

The probability distribution of round function output changes given the number of affected S-
boxes, represented by P(ny|l), can be determined by counting over all combinations of output
changes 7; from I S-boxes. Let d = [ddy...dj] where d; € {1,...,n} is the number of output
changes, wt(AY), in the i-th S-box that has a non-zero input change. Now define
1
A={d|} di =1y} (14)
i=1

to represent the values of d for which there are a total of 77 output bit changes. Hence,

Pysll) = Y- P(d) (15)

deA

where I’(d) represents the probability of a particular d occurring and is given by

!
r(d) =[] Po(ds). (16)
=1

Using equations (4) to (16), we can now iteratively determine the probability distribution of
bit changes, I’(7r,,nr), for each round in the cipher and, subsequently, the expected number of
bit changes after each round. Consequently, letting E{-} represent the expectation operation,

the avalanche probability after a particular round can be determined from

Pm; = E{nﬁ + ﬂR}/N (17)
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given 77, = 1 and fg = 0 at the input to round 1 if the one bit change occurs in the left half of
the plaintext, or 77, = 0 and g = 1 at the input to round 1 if the one bit change occurs in the

right half of the plaintext.

IV. Analysis of the Results

In this section, we present the results of the computations of the preceding section for various

ciphers with different parameters. We shall use a 64-bit cipher as a basis for comparison.

When computing the avalanche probability, one might consider one bit changes on either the

left or right side of the plaintext. In fact, it can be shown that
Pysfright] = Py, [left] (18)

where DPo, and ), represent the avalanche probabilities after < and 4 + 1 rounds, respectively,
and the keywords left and right indicate which half of the plaintext has the one bit change. This
results from the fact that a one bit change on the left side manifests itself as a one bit change
to the right side of the input to round 2. Since a DES-like cipher will have weaker avalanche for
a bit change on the left, we shall consider the left side avalanche probability to be the property

of interest.

In Figure 2, we present a plot of the avalanche probability versus the number of rounds in the
cipher where the S-box dimensions are of the form m x 4. Three cases are illustrated: m = 4,
m = 6, and m = 8. All results presented are based on the plaintext bit change occurring in the
left half. In all three cases, the avalanche probability is converging towards the desired value
of 1/2. However, it is clear that the larger the value of m, the faster the convergence. Similar

results were observed for ciphers based on m X 8 S-boxes where m = 8, m =12, and m = 16.

It is not surprising that performance is improved as m increases since a larger S-box input
increases the diffusion of bit changes. Note also that Figure 3, which compares ciphers using
8 x 4 and 8 x 8 S-boxes, suggests that the S-boxes with larger number of outputs improve
the avalanche probability convergence. Again this is perhaps not surprising and is due to
the improved diffusion of bit changes. However, Figures 2 and 3 suggest that the effects of
increasing the S-box input size appear to be more dramatic than an increase in the number

of output bits. Unfortunately, for cipher implementations where look-up tables are used for
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Figure 2: Theoretical Avalanche for DES-like Ciphers with m x 4 S-boxes

S-boxes, the amount of memory required increases exponentially in the size of S-box input and
only linearly in the size of the output. Hence, while the size of the S-box input is limited by
practical considerations, the output can be more freely expanded to improve the cipher security
properties. This suggests that the best combination of efficiency and security (in relation to

- avalanche) is given by ciphers using symmetric n x n S-boxes.

Consider now a comparison between the pérformance of a DES-like cipher versus a basic
substitution-permutation network such as discussed in [4]. (Basic SPNs do not have the struc-
ture of Figure 1: each round consists of substitution on the entire block using N /nnxn
S-boxes followed by a permutation on the entire block.) The cases for 4 x 4 and 8 x 8 S-boxes
are illustrated in Figure 4. For 4 x 4 S-boxes there is little difference between the two ciphers.
In fact, considering the relationship of (18), if the change is on the right side, then the DES-like
cipher actually performs significantly better. This is perhaps surprising: since, in a basic SPN,
the round function operates on the full block and, in a DES-like cipher, the round function
only operates on half the block, it seems reasonable to assume that an SPN would display good
cryptographic properties in fewer rounds. For the case of the larger 8 x 8 S-boxes, the SPN

clearly has better performance than the DES-like cipher.

Of course, any cipher is a deterministic structure based on a fixed set of S-boxes, permutation
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Figure 3: Theoretical Avalanche for DES-like Ciphers with 8 x 4 and 8 x 8 S-boxes

and expansion. The effect of the model, which treats these components as random variables, is
to smooth out the advantages or disadvantages of particular fixed components. Although it is
impossible to exactly model all ciphers using a general model, it appears that the generalizations
made in this model are not only intuitively reasonable but experimental results suggest that
they provide a reasonable approximation of the behaviour of a DES-like cipher. Nevertheless, it
seems reasonable to expect that the model is, in fact, pessimistic and that the careful selection
of S-boxes, permutations, and expansion mappings is likely to improve the performance of the
cipher in relation to the avalanche characteristics [4]. In the next section, we examine the
modelling of “diffusive” S-boxes and demonstrate that, indeed, S-box properties can be utilized

to improve the avalanche characteristics of a DES-like cipher.

V. Improving Avalanche by Using Diffusive S-boxes

A discussion on improving the avalanche characteristics of an SPN by selecting diffusive S-boxes
is contained in [4]. In this section, we consider the application of such S-boxes to a DES-like
cipher. Consider the following S-box diffusion property referred to as guaranteed avalanche [4]

and note that guaranteed avalanche order 2 is an acknowledged DES S-box criterion [6].

Definition 3: An S-box satifies the property of guaranteed avalanche of order « if, for a one bit
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input change, at least v output bits change, i.e., wt(AX) =1 = wt(AY) > 4.

Consider now the development of a model for an S-box satisfying guaranteed avalanche order
v, v 2 1. The probability distribution Pp(d) can be replaced by probability distributions
for the number of output bit changes conditioned on the number of input changes. Clearly,
Pp(D = Olwt(AX) = 0) = 1 and Pp(D = djwt(AX) = 0) = 0 for d > 0. Now let P,,(d) =
Pp(D = djwt(AX) = 1) and Pj(d) = Pp(D = dlwt(AX) > 1). The conditional probabilities

for the number of output changes is then given by

0 ,d <y
@)= G g5 (19)
|'='y(l')
and
e d=0
Phd) =< fayone—mpr@y 20
n(d) { (d)22”l_1:717:,)(d) d> 1. | (20)

Consider first the expression for I}, in (19). The case of d < « arises simply from the definition
of guaranteed avalanche; the case for d > + is derived by assuming that the selection of AY is
uniformly distributed over the set of values such that D = wt(AY) > 4. Considering now the
expression for I’}, the denominator of (20) represents the number of values of AX for which
wit(AX) > 1 and the numerator represents the number of values of AY for which wt(AY) =d,

scaled by factor 2™~ and adjusted to remove the expected number of AY values used for the
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Figure 5: Avalanche for DES-like Ciphers with Diffusive S-boxes

values of AX for which wi(AX) < 1.

The iterative computation of the avalanche probability follows similarly to the previous devel-
opment: equations (4) through (8) are equally applicable. However, (9) must be modified to
consider separately the cases of one bit input changes and more than one bit input changes to
the S-boxes. Let I represent the number of S-boxes for which wt(AX) = 1 and, as before, let

| represent the number of S-boxes for which w#(AX) > 1. Hence, (9) becomes

T M I
Plastir) = 3° 32 3 Plaglts1) - P, line) - P(nelne)- (21)

7e=01=0¥F=0

The probability P(1.|7r) may be computed as previously outlined in equation (10).

The probability P(,I|n.) can be determined by
. P(llyll"k) =N, 1) [N (ne) (22)

where N(n,) is the number of selections of 7 bit changes and N (I,l,7,) is the number of
selections of changes of 7, bits such that I S-boxes are affected by changes and I’ S-boxes have a
exactly a one bit input change. N (1,) is given by (12) and, based on Lemma 4 in [4], N'(', 1, )

is computed by

I . I~ . . .
N(l’, l,ﬂe) = ( All ) Z(_l)i—l' ( l?', ) ( i )7ni Z(__l)j ( l;z ) ( (l —1: :.Z)‘In ) ) (23)
=l j=0 €
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In order to determine P(n¢|l',1), define the vector d' = [did}...dp] such that d; € {v,...,n}
represents the number of output changes, wt(AY), of the i-th S-box for which wt(AX) = 1.
Similarly, define the vector d” = [d{d]...d]_,] such that d € {1, ...,n} represents the number

of output changes, wt(AY), of the i-th S-box for which w#(AX) > 1. Then

ras,n= Y pd.d" (24)
(dl’dll)eAt
where
’ 4 [
A* = {(d’, d) > di+ > dl =y (25)
=1 =1

with the probability P(d’,d") given by

r -r
r(d,d") = [H P’n(dé)] [H P’é(dé')] : (26)
i=1 i=1
Methods for improving the efficiency of the computation are given in [4].

Similarly to the previous development, (4) can be used to iteratively compute the avalanche
probability given a plaintext bit change in either the left or right half. For example, results have
been computed for a 64-bit cipher using 6 x 4 S-boxes, both for the original S-box model with
no diffusion (i.e., 7 = 0) and for the S-box model based on guaranteed avalanche order v = 2.
This is illustrated in Figure 5. There is a clear improvement in the avalanche performance
for the cipher constructed using diffusive S-boxes over a cipher without difffusive S-boxes. As
well, for comparison, since DES S-boxes satisfy v = 2, experimental results for DES based
on 10" pairs of plaintexts are also shown. While the theoretical and experimental results for
DES are close, it is not surprising that experimental results on DES are slightly better than
the theoretical model with diffusive S-boxes. To more accurately model DES, the model would
have to incorporate a fixed representation of the DES expansion and permutation instead of
treating the expansion and permutation as random and averaging over all possibilities, good

and bad.

VI. Conclusion

We have modelled the avalanche characteristics for DES-like block ciphers and, consequently,

analyzed the performance of the ciphers in response to variations in parametfers such as the
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S-box dimensions and properties. The results suggest that large, symmetric S-boxes provide
the best combination of cipher efficiency and the strength of a cipher’s avalanche. As well, the
model is extended and used to demonstrate that selecting diffusive S-boxes is also effective in

improving the avalanche characteristics of a DES-like cipher.
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In the early 40’s, the second world war raised the big issue of providing
secrecy for electronic telecommunication. Of course, this was for military pur-
poses, but it also initiated similar inquiries for comercial use. In 1949, Shannon
published the first (public) scientific treatment of encryption [15]. He proved
that the very simple Vernam Cipher (also known as one-time pad) provides per-
fect secrecy [18]. This encryption algorithm is however not really an encryption
function because the sender and the reciever need to be synchronized. It also
uses a quite cumbersome huge secret key.

For banking matters, the U.S. Government developped in 1977 the Data
Encryption Standard (DES) which is a 64-bit to 64-bit encryption function that
uses a small secret key (namely 56 bits) [1]. This was build around the Feis-
tel scheme (from the name of the designer of the preliminary version), which
appears to be very efficient. It however has no proven security, and its develop-
ment criteria have been kept secret. Since then, researchers from this area have
been working on its cryptanalysis.

During twenty years, only two important approachs inspired new knowledge
about the security of DES. First, Biham and Shamir discovered in the early 90’s
the notion of differential cryptanalysis which gave the first (theoretical) attack
against DES better than exhaustive search (namely with complexity 247 instead
of 25%) [3, 4]. Later on, Matsui discovered a quite dual approach, called linear
cryptanalysis which raised the first experimental attack of DES (with complexity

243) [8].

Now, the DES is getting old, and we have new applications for encryption.
For instance, security purposes on Internet require high rate encryption. We
thus need a global approach for security on block ciphers.

In this talk, we investigate different approachs for providing security against
both differential and linear cryptanalysis. First, we review a heuristic approach
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that consists in designing strong computation boxes in strong computation net-
works. We use the strength analysis from Nyberg [11], Nyberg and Knudsen
[12] and Chabaud and Vaudenay [5]. We also use the analysis of the network
from Heys and Tavares [6].

Second, we review another approach for getting proven security against dif-
ferential and linear cryptanalysis from a Theorem due to Nyberg and Knudsen
[12] recently improved by Aoki and Ohta [2]. We also discuss about a nice
construction from Matsui [9]. ' :

We also try to generalize the analysis method into statistical attacks (by
using the general frame independently found by Vaudenay {16, 17] and Murphy,
Piper, Walker and Wild [10]) to get other design criteria.

Finally, we discuss about a theoretical approach due to Luby and Rackoff
[7] which has been improved by Patarin [13] proved that a n-bit to n-bit three-
round Feistel scheme is secure for about 27/ uses when using a 3%2"/ 2_bit secret
key. Patarin also conjectured that some special four-round Feistel scheme may
be secure for 27/2 uses with a n27/2-bit key [14]. This would correspond to the
strongest possible security.
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