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Abstract

Block and stream ciphers are made from Boolean functions that usually
require a compromise between several conflicting cryptographic criteria. Al-
though some constructions exist to generate Boolean functions satisfying one
or more criteria, such as balance and high nonlinearity, there are often draw-
backs to them such as low nonlinear order. In this paper we present a new
algorithm for simple modification of a Boolean function truth table to improve
both nonlinearity and balance. We also show how to modify a balanced function
in two truth table positions so that the nonlinearity is increased and the balance
is maintained. When the algorithm fails to find an improvement, one does not
exist, and we have then identified a locally maximum function. We present re-
sults comparing the probability distributions of random functions with that of
locally maximum functions found by our algorithms, and also comment on how
the number of steps required to find a local maximum is affected by increasing
the number of variables.

1 About Boolean Functions

Let f(x) denote the binary truth table (f(z) € {0,1}) and f(z) the correspond-
ing polarity truth table, f(z) € {1,—1}. We have f(z) = (—1)/®) =1 —2f(z).
The Hamming weight of a Boolean function is the number of ones in the binary

truth table, or equivalently the number of —1s in the polarity truth table. A
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balanced function has the same number of zeroes and ones in the truth table.
Balance is a primary cryptographic criterion: an imbalanced function has sub-
optimum unconditional entropy (ie. it is correlated to a constant function). We
define the imbalance of a Boolean function as Iy = 3, f(z). The correlation
between a function and the constant zero function is simply é{.—, which is a
value between -1 and 1. A function with zero imbalance is balanced and has
no correlation to the constant functions.

Every function has a unique representation in the Algebraic Normal Form
(ANF) as the binary coeflicient vector of a fixed (positive) polarity Reed-Muller
expansion (for example, see [5]). The ANF describes a two level circuit: an XOR.
sum of AND products. The nonlinear order or just order of a Boolean function
is the size of the largest product term in the ANF. Order zero functions are
constant, affine functions have order 1, and linear functions are those affine
functions with a zero constant term in their ANF. The exclusive-or operation
is linear; a linear function is an XOR sum of variables. We may specify a
linear function by an n-bit vector w that selects the variables in this sum:
L,(z) =121 @ - - @ wpTy.

The Hamming distance to linear functions is an important cryptographic
property, since ciphers that employ nearly linear functions can be broken easily
by a variety of methods (for example see [7, 4]). In particular, both differen-
tial and linear cryptanalysis techniques [2, 8] are resisted by highly nonlinear
functions. Thus the minimum distance to any affine function is an important
indicator of the cryptographic strength of a Boolean function. The nonlinearity
of a Boolean function is this minimum distance, or the distance to the set of
affine functions. We note that complementing the output will not change the
nonlinearity of any Boolean function, so we need to consider the magnitude of
the correlation to all linear functions, of which there are 2".

The Hamming distance between a pair of functions can be determined by
evaluating both functions for all inputs and counting the disagreements. This
process has éomplexity O(2"). It follows that determinihg the nonlinearity in

this naive fashion will require O(2%") function evaluations, which is infeasible
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even for small n. However, a tool exists that enables the calculation of all linear
correlation coefficients in O(n2") operations. This is the fast Walsh-Hadamard
Transform, and its uses in cryptography and elsewhere are well known [1, 13].

Let F(w) denote the Walsh-Hadamard Transform (WHT) of a Boolean func-
tion. Its calculation is defined as F(w) = ¥, f(z)L, (z). It is clear from this
definition that the value of F(w) is closely related to the Hamming distance
between f(z) and the linear function L, (z). In fact the correlation to the linear
function is given by ¢(f, L,) = ﬂz,?z The nonlinearity Ny of f(z) is related to
the maximum magnitude of WHT values W Hy,4z, by Ny = %* (2" — W H,p0z)-
Clearly in order to increase the nonlinearity, we must decrease WHy,,,. A
function is uncorrelated with linear function L, (z) when F(w) = 0. We would
like to find a Boolean function that has all WHT values equal to zero, since such
a function has no correlation to any affine function. However, it is known [9]
that such functions do not exist. A well known theorem, widely attributed to
Parseval [6], states that the sum of the squares of the WHT values is the same
constant for every Boolean function: )", F? (w) = 2%". Thus a tradeoff exists in
minimising affine correlation. When we alter a function so that its correlation
to some affine function is reduced, the correlation to some other affine function
is increased.

It is known that the Bent functions [12] satisfy the property that |F'(w)| =
2% for all w. Bent functions exist only for even n, and they attain the maximum
possible nonlinearity of Nyeqs = 2*~1—2% 1, It is an open problem to determine
an expression for the maximum nonlinearity of functions with an odd number -
of inputs. It is known that, for n odd, it is possible to construct a function with
nonlinearity 27! — 25 by concatenating Bent functions. It is known that for
n = 3,5, 7 that this is in fact the upper bound of nonlinearity. The only value of
n for which it is known that this value is not the upper bound is n = 15 [10, 11].
We note that determining the covering radius of a Reed-Muller code is the same
problem as finding an upper bound on low order approximation. It is a well
known open problem to find the covering radius of Reed-Muller codes, so it

is not known to what extent functions may resist low order approximations.
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There seem to be no formal tools for low order nonlinear approximation, so we
leave this difficult area, and instead concentrate on improving the nonlinearity
of Boolean functions in a systematic way.

In this paper, we present algorithms that provide a list of truth table po-
sitions that, if complemented, will result in a Boolean function with higher
nonlinearity. The approach is based on the observation that small changes to a
truth table result in small magnitude changes to the WHT values. In particu-
lar, a single truth table complementation will cause every F(w) to alter by +2.
Two truth table changes will cause AF(w) € {~4,0,4}. We use these facts in
the next section to prove conditions required for small changes to increase non-
linearity. When two changes are made, the Hamming weight can be maintained
while nonlinearity is increased.

These techniques provide a fast way of hill-climbing the Boolean function
terrain to locate highly nonlinear Boolean functions that would be difficult to

obtain by a purely random search or exhaustive hill climbing.

2 Improving Nonlinearity

Consider altering a function f(z) by complementing the oufput for a single
input z;, with the nonlinearity increasing. We define the 1-Improvement Set of
f(z), 1-18; , as the set of all inputs such that complementing the corresponding

output of any one of them will increase the nonlinearity of the function.

Definition 1 Let g(z) = f(z) @ 1 for ¢ = z; and g(z) = f(z) for all other z.
Ing>Nf then 1 € I-ISf. 0

If 1-15; is empty, the function is a 1-local maximum for nonlinearity. Of
course all Bent functions are global maxima, so their 1-Improvement Sets are
empty. There also exist sub-optimum local maxima that will be found by hill
climbing algorithms. It is computationally intensive to exhaustively alter truth
table positions, find new WHTSs and so determine the set 1-I.Sy, so we seek a
fast, systematic way to determine the 1-Improvement Set of a given Boolean

function from its truth table and Walsh-Hadamard transform. In this section
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we present easily checked conditions for an input z to be in the 1-Improvement
Set.

Definition 2 Let f(z) be a Boolean function with Walsh-Hadamard Transform
F(w). Let W Hpnos denote the mazimum absolute value of ﬁ‘(w) There will
exist one or more linear functions Ly (z) that have minimum distance to f(z),

and |F(w)| = W Hypag for these w. Let us define the following sets:

Wi = {w:F(w) = WHpe} and
W = {w: F(w) = ~W Hpaz}-

We also need to define sets of w for which the WHT magnitude is close to the

mazimum.

Wi = {w:F(w) = WHpe —2},

Wy = {w:F(w)=—(WHnau—2)},
Wi = {w: ﬁ'(w) = W Hpoz — 4}, and
Wy = {w:F(w)=—(WHpe —4)}

O

When a truth table is changed in exactly one place, ’all WHT values are
changed by +2 or -2. It follows that in order to increase the nonlinearity we
need to make the WHT values in set W;" change by -2, the WHT values in set
W[ change by +2, and also make the WHT values in set Wz;" change by -2 and
the WHT values in set W, change by +2. The first two conditions are obvious,
and the second two conditions are required so that all other |F'(w)| remain less

than W H,,.,. These conditions can be translated into simple tests.

Theorem 1 Given a Boolean function f(zx) with WHT F(w), we define sets
W+ =Wt uWs and W~ = W] UW; . For an input z to be an element of
the Improvement Set, all of the following conditions must be satisfied.

(i) f(z) = Ly(z) for dl w e W
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and

(i) f(z) # Ly(z) for adllw e W~

If the function f(z) is not balanced, and we wish to reduce the imbalance,
we tmpose the additional restriction that

(i5) when F(0) > 0, f(z) =0, else f(z) = 1. ' O

Proof: We start by considering the conditions to make WHT values change
by a desired amount. When F'(w) is positive, there are more 1 than -1 in the
polarity truth table, and more 0 than 1 in the binary truth table of f(z)® L, (z).
It follows that to make Af"(w) = —2, we must change any single 0 to 1 in the
truth table of f(z)® L, (z). This means that we select an z to change such that
f(z) = Ly(x). We desire a -2 change for all WHT values with w € W, so this
proves condition (i). A similar argument proves condition (ii). A function is
balanced when F(0) = 0, so to reduce the imbalance we must select = according
to condition (iii). o

We often seek to improve the nonlinearity of balanced Boolean functions,
while retaining balance. Clearly this requires an even number of truth table
changes. We now present the conditions on a pair of inputs’ :1:1,:1:2' so that
complementing both their function values causes an increase in nonlinearity,
without changing the Hamming weight. We define the 2-Improvemenﬁ Set, 2-
IS, as the set of all such input pairs. A function for which no pair satisfies

these conditions is said to be a 2-local maximum.

Theorem 2 Given a Boolean function f(z) with WHT F(w), we define sets
Wy =wituwy, W2-t-3 =W UWy and Was =Wy UW;5'. A pair of inputs
(z1,2) is in the 2-Improvement Set of f(z) if and only if all of the following
conditions are satisfied:

(1) f(z1) # f(z2)

(ii) Ly(z1) # Ly(z2) for all w € Wy

(iti) f(z;) = Ly(z;), i € {1,2}, for allw € Wy

() f(z;) # Lu(z;), i € {1,2}, for allw € W}

(v) for all w € Wyfy, if Ly(z1) # Lu(z2) then f(z;) = Ly (z;), i € {1,2}
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(vi) for all w € Wy, if Ly(z1) # Lu(x2) then f(z:) # Lu(z:), i € {1,2} O

Proof: Condition (i) is required to maintain the Hamming weight. Conditions
(ii), (iii) and (iv) are proven similarly to theorem 1. In order to stop the correla-
tion to other linear functions increasing too much, we require that Aﬁ'(w) # +4,
for all w € W{ 3, and it follows that not both of f(z;) ® L, (z;) = 1, or equiva-
lently that at least one of f(z;) & L,(z;) = 0. Consequently,

[f (z1) ® Lo (1)][f (z2) ® Lu(z2)] =

and expanding this, noting from (i) that f(z;)f(z2) = 0, we have
f(@1) Lo (z2) ® f(z2)Lu(z1) ® Lus(z1)Lu(z2) = 0.

Wevneed to consider four cases to find the exact conditions for this expression
to be satisfied:

(a) When L, (z1) = L,(z2) = 0 the expression is satisfied and no further
conditions on (z;,z2) are required.

(b) When Ly (z1) = Ly(z2) = 1 the expression becomes f(z1) @ f(z2) =1
which is eqmvalent to condition (i).

(c) When Lw(.'z:l) =0 and Ly (x2) =1 the expression. becomes fz) =0.

(d) When L,(z1) =1 and L,(z3) = 0 the expression becomes f(zz) = 0.

Combining (a)-(d) we see that when L, (z1) # Ly(z2) for w € Wohy we
require that f(z;) = L, (z;), ¢ = 1,2, thus proving condition (v). The Proof of
(vi) is similar. o

The following theorem shows how to modify the WHT of a Boolean function
that has been altered in a single truth table position, with complexity O(2").
We note that the algorithm for incremental improvement of Boolean functions
suggested in [3] recomputes the WHT after every single bit change regardless
of whether that change improves the nonlinearity. Qur algorithms are superior
on two counts - every change is an improvement and the new WHT is found n

times faster.

Theorem 3 Let g(z) be obiained from f(z) by complementing the output for
a single input, 1. Then each component of the WHT of g(z), G(w) = F(w) +
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A(w), can be obtained as follows: If f(z1) = Lu(z1), then A(w) = -2, else
Alw) = +2

Proof: When f(z1) = L, (z), we have (—1)/(®)®Lw(®) = 1 which contributes
to the sum in F(z;). Changing the value of f(z;) changes this contribution to
-1, so AF(w) = —2. Similarly when f(z;) # L,(z), AF(w) = +2. o

3 Implementation and Results

In this section the implementation details for the one step improvement and
two step improvement algorithms are given - HillClimb and HillClimb2. We
note that condition (ii) of Theorem 2 is redundant, and is not referred to in the

implementation of that algorithm.

e HillClimb(BF, WHT)

1. Determine maximum value of the Walsh-Hadamard transform WHmax.-

2. By parsing the WHT find the values of w which belong to the sets
Wi, Wi, Wy and Wy . At the completion of this step there should
be two lists: W+ = Wt UW, and W~ = W;” UW, . NB. Either
(but not both) of W+ and W~ may be empty.

3. Foriin0...2" -1, do
(a) Let b; denote the itB bit in the truth table of BF.

(b) Parse the sets W+ and W~ ensuring that conditions (iii) and-

(iv) in Theorem 2 are satisfied - if not skip to Step 3e.

(c) We have a candidate for improvement. Complement b; in the
truth table of BF (denote the resulting boolean function BF’),
update the WHT (becoming WHT’) by using Theorem 3, and
call HillClimb(BF’, WHT").

(d) Skip to Step 4.
(e) Increment i (i =1 +1).

4. BF represents a 1-local maximum - terminate processing.
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e HillClimb2(BF, WHT)

1. Determine maximum value of the WHT WHm5x.
2. By parsing the WHT obtain the sets Wi, Wy, Wz'f;, and Wo ;.
3. Foriin0...2" -1, do

(a) Let b; denote the ith bit in the truth table of BF.

(b) Parse the sets W' and W~ ensuring that conditions (iii) and

(iv) in Theorem 2 are satisfied - if they are add i to c,.
4. For each element of cg, do
(a) For each element of ¢;, do

i. Check conditions (v) and (vi) of Theorem 2 and if they are
satisfied complement the corresponding bits in the truth table
(call the resulting truth table BF’), find the adjusted WHT
(becoming WHT") by applying Theorem 3 twice and call Hill-
Climb2(BF’, WHT"). Skip to Step 5.

5. BF represents a 2-local maximum - terminate processing.

We now present examples of the distribution of nonlineafity for random
functions and random balanced functions, compared with the nonlinearity of
locally maximum functions obtained by our two algorithms. In Figures 1 and 2
we compare random functions with the maxima found by HillClimb, for 8
and 12 input variables respectively. From these graphs it is clear that random
functions have a smooth, bell-shaped distribution, whereas 1-local maxima are
much more likely to have an even value for nonlinearity. It is also clear that
hill climbing will find highly nonlinear functions much more easily than random
search.

Figures 3 and 4 illustrate the performance of random generation versus hill
climbing, when confined to balanced functions only, for functions with 8 and
12 input variables respectively. Note that HillClimb2 conserves Hamming
weight. For our tests we started with balanced functions so that the 2-local
maxima were also balanced. This allows a direct comparison with randomly

generated balanced functions. It is easy to show that the nonlinearity of a
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Figure 3: A Comparison of Hill Climbing with Random Balanced Generation, n=8.

balanced function is always even. For simplicity we only show results for even
values of the nonlinearity in these graphs.

Figure 5 shows how the average number of steps to find a local maximum is
changing with the number of variables. These results_suggest,thét as n increases
the distance from a random function to a local maximum is increasing in an
exponential-like manner. The implication of this is that these hill climbing
algorithms will be more effective for large n. It follows from Theorem 3 that
making n hill climbing steps can be done in approximately the same time as
a single random generation and complete fast WHT. The relative efficiency of .

the hill climbing algorithm improves as n increases.

4 Conclusion

We have presented two useful algorithms for the improvement of Boolean func-
tions. With these tools it is now feasible to perform hill climbing to obtain lo-
cally maximum functions. In conjunction with heuristic search methods, these
tools provide a means to find strong Boolean functions for cryptographic ap-

plications.
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Several open problems remain. One is to determine the general relationship
between the nonlinearity of a Boolean function and the size of its Improvement
Set. Clearly local maxima have empty sets and local minima have full sets, but
for arbitrary functions the relationship is not clear. Initial experiments have
shown that two functions with the same nonlinearity can have different sized
Improvement Sets, and the results suggest that the function closer to a local
maximum has a smaller Improvement Set, so that in a hill climbing algorithm
it may be of benefit to maintain as large a set as possible, thus avoiding grossly
sub-optimum local maxima.

Smart hill climbing may be adapted to generate Boolean functions satisfying
other cryptographic criteria, and to improve the nonlinearity of bijective S-

boxes. These topics are the subject on ongoing research.
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Abstract: We show a Boolean function f(z,...,,) satisfying PC(2) such that
deg(f) is almost n — logyn. This degree is much larger than the best currently
known degree n/2. We also show a balanced PC(2) function such that deg(f) is
almost n — log, n. ’

Key words: Boolean function, propagation criterion, large degree, balance.

1 Introduction

The security of DES-like block ciphers are often discussed by viewing their F' fune-
tions (or S-boxes) as a set of Boolean functions. PC(l) [5] is an important cryp-
tographic criterion of such Boolean functions. A Boolean function f (Z1y--->Tn)
satisfies PC(1) if complementing any ¢ (1 < ¢ < I) input bits results in changing the
output bit with the probability one half. f satisfies SAC if and only if f satisfies
PC(1). f is a bent function if and only if f satisfies PC(n).

On the other hand, balancedness and algebraic degree are other important
cryptographic criteria. Let deg(f) denote the degree of the highest degree term in
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the algebraic normal form of f. Then deg(f) must be large. Actually, Jakobsen
and Knudsen [2] showed an attack on block ciphers with small deg(f) recently.

f satisfies SAC(k) if any function obtained from f by keeping any k input bits
constant satisfies SAC. Preneel et al. [5] showed that

deg(f)<n—k—-1 (1)

if f satisfies SAC(k). Recently, Kurosawa and Satoh [3] showed that the equality
of this bound can be satisfied.

Now suppose that f(zi,...,z,) satisfies PC(2). Then since f satisfies SAC,
we obtain a trivial upper bound on deg(f) such that

deg(f) <n-—1

from eq.(1). No other better bound is known. On the other hand, a bent function
satisfies PC(2) because it satisfies PC{n). Further, there exists a Maiorana type
bent function f(z,...,x,) such that deg(f) = n/2. (This is the maximum degree
of bent functions.) Therefore, there exists a PC(2) function such that deg(f) =
n/2. However, no PC(2) function is known such that deg(f) > n/2.

Thus, there is a big gap between the current realization and an upper bound
on deg(f) of PC(2) functions. '

In this paper, we show a PC(2) function f(z,...,2,) such that deg(f) is
almost n —log, n. This degree is much larger than the best degree so far. We also
show a balanced PC(2) function f(z,...,z,) such that deg(f) is almost n—log, n.

2 Preliminaries

We use square brackets to denote vectors like [ay,...,a,] and round brackets to

denote functions like f(z1,...,zy).

2.1 Algebraic degree
Definition 2.1 The following form is called the algebraic normal form of f.

n
f@)=ao@azi® P ayziz;® - ©a1p.nT1T2 " Tn.
i=1 1<i<j<n

deg(f) denotes the degree of the highest degree term in the algebraic normal form
of f.
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2.2 Balance
Definition 2.2 For any o € '{0, 1}*, W(a) denotes the Hamming weight of .

Definition 2.3 A Boolean function f(z) is balanced if |{z | f(z) = 0}[ = [{z |
f(z) =1} = 2", where z = [zy,...,%Ty)-

Definition 2.4 We call f(z) = ag @ a171 ® -+ @ anT, an affine function.
Proposition 2.1 A non-constant affine function f is balanced.

Proposition 2.2 [7] A Boolean function f(z1,...,%s) ®9(¥1,.-.,Yk) is balanced
if f is balanced or g is balanced.

2.3 PC(l), SAC and Bent function

Definition 2.5 [5] f(x1,...,%,) satisfies PC(l) if f(z) ® f(z® a) is balanced for
any a € {0,1}" such that 1 < W(a) < 1. We say that f is a PC(l) function if f
satisfies PC(1).

Definition 2.6 [1, 8/

1. f satisfies SAC if and only if f satisfies PC(1). We say that f is an SAC
function if f satisfies SAC.

2. f satisfies SAC(k) if any function obtained from f by keeping any k input bits
constant satisfies SAC. We say that f is an SAC(k) funct‘zon if f satisfies
SAC(k).

Proposition 2.3 [5] If f(z1,..., ) satisfies SAC(k), then
deg(f)<n-—-k-1.

Definition 2.7 [4] f(z1,...,2y5) is a bent function if and only if f satisfies PC(n).

Proposition 2.4 [6] If f(x3,...,%,) 5 a bent function, then

deg(f) <n/2 .
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3 PC(2) with very large degree
Suppose that f(z1,...,z,) satisfies PC(2). Then from Proposition 2.3,
deg(f)<n-—-1.

On the other hand, there exists a PC(2) function such that deg(f) = n/2. (For
example, a Maijorana type bent function.) However, no PC(2) function is known
such that deg(f) > n/2.

In this section, we show a PC(2) function f(x1,...,z,) such that deg(f) is
almost n — log, n. This degree is much larger than the best degree so far.

Definition 3.1 For a Boolean function f(xi,...,z,), define

df A

'd%=f(x1)"'s$i7"'amn)ef(mla'-')zi@la-"sxn) )

a a
7 f = f(X1ye ey Tiyenns Tjyee oy Tn) @ fT1, .., 2 @ 1,00, 2; 01,00, 2y) -
T;Tj

Theorem 3.1 Let z = [z1,...,%;] and y = [y1,...,9x]. For al x (k+1) matric

a1 -+ a1
H =
ag - oap 1

and any three Boolean functions fi(z), fa(y), fa(z), define

g(:l:,y, Z) é fl(m) @ fZ(y) EBfS(Z) @ [mla .- -aml]H[yl)' v 7ykaz]Ta

where g has 1+ k-1 input bits. Then g satisfies PC(2) if H satisfies the following
four conditions.

1. [ayiy-..ya5)T #10,...,0]T for any i.
2. [asiye..yai5)F #[1,...,1]T for any i.
3. layiy- .. au)T # [ayj,. .. a7 for any i and j such that i # j.

4. lai1, ... 0] # [aj1,...,a5k] for any i and j such that i # j.
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Proof. g satisfies PC(2) if and only if

dg d9 dg dg dg dg dg dg
dz;’ dy;’ dz’ dz;x; " dyiy;’ dziyj P dzz;’ dzy;

are all balanced. First, for any i,

ig_z_‘%‘t.L@a @...@ - @z

da; dz; i1Y1 L
is balanced because a;1y; ®- - -Da;rykP2 is a non-constant affine function. Similarly,
dg d
—‘q, 29 are all balanced. Next, for ¢ # 7,
dy;" dz

dg _ df ‘
dziz;  dmia,; ® (291 @ - D airyr) © (2191 © - - © ajkyk)
= 41 ® (a1 ®aj)yr & - ® (aix D aji)yr -
dz;x; J J

From the fourth condition, {a;1,...,a) # [aj1,...,@;t] and hence (ai1 ® aj1)y1 @

is balanced.

-+ ® (aix @ a; )y is a non-constant affine function. Therefore, 7 g
~ T;T;

Similarly, the other cases are all balanced. O

Corollary 3.1 There exists a Boolean function g satisfying PC(2) such that

1. g hasn 9—-!-{-2’ — 1 tnput bits.
2. deg(g) =n—-1—-1=n—logyn.
Proof. In Theorem 3.1, let

1

H=1 ¢ €9 I |

1

where ¢; is the column vector of size | representing the value of ¢ in binary. Note
that H is a parity check matrix of the Hamming [2l —1,2' —1—1,3] code. Then
it is easy to see that the four conditions on H are satisfied. Hence, we can choose
k as k = 2! — 2. (Actually, the maximum value of k is 2! — 2 because ep and ey_;
can not be used from the conditions 1 and 2.) Further, let

fo(y) =wn1v2... Uk -
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Then

n=l+k+1=1+2' -1
deg(g) = deg(f2) =k =2' -2

=n-1-1

~ n — logy n.

4 Balanced PC(2) with very large degree

In this section, we show a balanced PC(2) function such that deg(f) is almost
n — log, n.

Definition 4.1 We say that f is balanced for a matriz H if
{z | f(z) =0,Ha" =0}| = |{z | f(e) = 1L, Hz" = 0}] .
Theorem 4.1 Let z = [11,...,7] and y = [y1,...,yk]. For al X (k + 1) matriz

a;p - o 1
H = . -
an - a1

and any two Boolean functions fa(y), f3(2), define

g(xayrz) é f2(y) ®f3(z) @ [3"17 see axl]H[yla"' 1yk5z]T1

where g has | +k + 1 input bits. Then g is balanced and satisfies PC(2) if the
following five conditions are satisfied.

1. [ag,...,a5]T #10,...,0]T for any i.

2. larsy.-ya5)T #[1,...,1]T for any i.

3. a1, ... au]T # [a1j, ..., 0] for anyi and j such that i # j.
4. lai,...,ai] #laj1,...,a%] for any i and § such that i # j.
5. fo(y) @ fa(z) is balanced for H.
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Proof. From Theorem 3.1, it is clear that g satisfies PC(2). We prove that g is
balanced. Let A
[51,---, 51T = Hlys, ...,y 2]7 -

Then g is written as
g = f(y) ® f3(z) @ lz1,..., ] H[w1, - - yYks 2)T
= fZ(y) 5] fs(z) Dri5:D---DIIsy .

If [s1,.-., 81 #[0,...,0], then z15 ®- - - x;s; is a non-constant affine function. In
this case, from Propositions 2.1 and 2.2, g is balanced. If [s;,...,s] = [0,...,0],
then .

g = fa(y) ® fa(z2) -
From the fifth condition, fo(y) @ f3(z) is balanced and g is balanced. O

Corollary 4.1 There exists a balanced Boolean function g satisfying PC(2) such
that :

1. g hasn 2 + 2 — 1 input bits.
2. deg(g) =n—~1—1=n—logyn.
Proof. As in the proof of Corollary 3.1, let k = 2! — 2 and let
1

H= €ex Eyl_o ' I

1

where ¢; is the column vector of size ! representing the value of ¢ in binary. The
first four conditions of Theorem 4.1 are satisfied. Let f3(z) = 0. We show that
there exists fo(y) such that

1. the fifth condition is satisfied.
2. fo(y) includes a term y1y2 ... Yk.
Let
A T
Ay = {y | Hly,0]" =0},
FAN
Ay = {y | H[y71]T =O} 3
Ao 2 A UA, .

70




It is easy to see that A; N Ay = 0. Then it is also easy to see that fa(y) @ f3(z) is
balanced for H if and only if

Hy | f2(y) =0,y € Ao}l = {y | fo(y) = 1,3 € 4o}| . (2)

Further, fo(y) includes a term y3y2 ...y if and only if

Hy | f2(y) =1} = odd . (3)

Now write the truth table of fo(y) such that eq.(2) and eq.(3) are satisfied. Then
a desirable f3(y) is obtained. Hence, as in the proof of Corollary 3.1,

n=l+k+1=1+2"-1
deg(g) =n—-1—-1=~n—logyn.
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