Performance and Security of Block Ciphers
using Operations in GF'(2")

Shiho Moriai, Takeshi Shimoyama,

Research Project of Info-Communication Security,
Telecommunications Advancement Organization of Japan
1-1-32 Shin’urashima, Kanagawa-ku, Yokohama, 221 Japan

{shiho,shimo}@yokohama.tao.or. jp

Abstract. We present a block cipher that has the best performance of all 64-bit
block ciphers with the smallest proven differential/linear probability 2762 using the
structure proposed by Matsui. One of features of his methodology is to use some
power functions in GF(2") with different n that are resistant to differential and lin-
ear attacks. In this paper we discuss how to combine power functions z* in GF(2™)
over GF(2) with different k and n with the goal of designing block ciphers with high
performance and security against known attacks.

Keywords. block cipher, provable‘ secufity, extension of finite field, power functions,
differential attack, linear attack, higher order differential attack

1 Introduction

Many methods were proposed for constructing practical and provably secure block ciphers. One
of them is Matsui’s structure[12] for block ciphers with provable security against differential and
linear attacks. It is a modified Feistel cipher based on three principles: change of the location
of round functions, round functions with recursive structure, and substitution boxes of different
sizes. The first realizes parallel computation of the round functions without losing provable
security, and the second reduces the size of substitution boxes, and the last is expected to make
algebraic attacks difficult.

The feature to which we direct our attention is to use some power functions z* in GF(2")
over GF(2) with different k and n that are resistant to differential and linear attacks. In this
paper we discuss how to combine power functions z* in GF(2") over GF(2) with different k and
n with the goal of designing block ciphers using Matsui’s structure with high performance and
security against known attacks. The known attacks include the algebraic attacks such as higher
order differential attack[9, 6] as well as differential and linear attacks.

The block cipher MISTY, also proposed by Matsui[13], adopts this structure and is guar-
anteed to be provably secure against differential and linear attacks. The substitution boxes of
MISTY are composite functions of some affine functions snd power functions over GF(27) and
GF(2°) which are bijective, almost bent, and almost perfect nonlinear. However, we can con-
struct many other ciphers with the same or higher level of security in terms of probability of
differential and linear hull by using other power functions z* in GF(2™) over GF(2). Here we

117

ety
Rw

also consider the encryption and decryption speed to select the exponent of the power function k
and extension degree n.

In this paper we describe the results of: 1. implementing cubic function (ie. K =3) in
GF(2") over GF(2) for 3 < n < 65 by using various algorithms to attain the best performance,
and 2. computing the encryption speed of all 64-bit block ciphers using cubic functions with the
smallest proven differential/linear probability 27 by combining the results above.

Finally, we present a block cipher that has the best performance of all 64-bit block ciphers
with the smallest proven differential/linear probability 2762 uysing Matsui’s structure. The coun-
termeasure against higher order differential attack[6] is also discussed.

2 Preliminaries

. 2.1 Definitions

Definition 1 Let p(z) be an irreducible polynomial over GF(2) with degree n. The extension
field GF(2)[z]/Id(p(z)) is denoted by GF(2"), where Id(p(z)) is an ideal of p(x). n is the
extension degree. ‘

Tt is known that for every positive integer n there exists an irreducible polynomial with degree n.
For finding irreducible polynomials over GF(2), see the references [20, 21, 23, 24]. In Appendix
B we list the irreducible polynomials over GF(2") (2 < n < 68), primitive elements, and normal
generators used in our experiments.

Definition 2 Let F : GF(2") = GF(2") be a function with an n-bit input x = (Zn-1,---,%0)
and an n-bit output y = (Yn—1,.--,%0). Each output bit is represented by a polynomial of input
bits; y; = f(Tn_1,---,T0). We call it the coordinate function. Let ord(f) be the algebraic order
(total degree) of f. \ ‘

Definition 3 Let F : GF(2") — GF(2") be an n-bit function. We define the differential
probability DP(AX — AY') and linear probability LP(TY = T'X) as follows;

DP(AX—AY) = Probx{F(X +AX)=F(X)+AY}
LP(PY—H‘X) = |2ProbX{X -I'x = F(X) 'FY} - 1|2 ,

where + denotes bitwise exclusive-or, and a - b denotes the even parity of the bitwise product of
a and b. '

We also define the mazimal differential probability DPmax and the mazimal linear probability
LPmax as follows; ‘

DPmax = , goax DP(AX—AY)

2.2 Functions with provable security against differential and linear attacks

Some power functions in GF(2") are known to have minimal DPpax and LPpax, i.e. they have
provable security against differential and linear attacks (see Table 1 [7D).

118

F(z) | ord(f) | DPmax | LPmax | conditions

g2+ 2 25—n s = ged(t, n)

2+ 2 25— | 5= ged(t, n)
n/s odd

z7! | n—1| 21-n | 21-% | nodd

z7l [n—1] 227" | 21" | neven

Table 1: Examples of power functions in GF(2") over GF(2) which attain minimal values of
differential/linear probability

3 Algorithms for Computing Arithmetic Operations in GF(2")

GF(2") is an n-dimensional vector space over GF(2). Once a basis for GF(2") over GF(2) has
been given, any element a in GF'(2") is represented by a vector with n elements in GF(2) as
follows:

a= (an—la "'7a0)7 a; € GF(z)

There are two typical bases of GF(2"): polynomial basis and normal basis. The coordinate
functions depend on the basis.

3.1 Polynomial basis

Fix an irreducible polynomial p(z) over GF(2) with algebraic degree n. The elements of
{z™7,...,z,1} become linearly independent over GF(2), and this set is called the polynomial
basis. An element a = (ag—1,...,a) in GF(2") corresponds to the polynomial @, _;z" 1 +.. -+
a1z + ag.

The addition in GF(2") corresponds to addition in n-dimensional vector space over GF(2),
i.e. it is done by bitwise exclusive-or. For multiplication in GF(2"), let A = (ap—1,...,a0) and
B = (bp—1, ..., bp) be elements in GF(2"), A is then represented as ap—12™ ! +--- + ag, and B
as bp—12" 1 + ... + by. The product of A and B is calculated by AB mod p(z). There is an
algorithm for computing this product which requires n shift operations and n additions(exclusive-
or operations). ,

The k-th power function in GF(2") is calculated by A* mod p(z). There is an algorithm
for computing the k-th power which requires 2log,(k) multiplications in GF(2"). For a fast
implementation with less memory, it is important to use an irreducible polynomial with small
number of terms such as an irreducible trinomial (see Appendix B).

3.2 Normal basis

For each extension degree n, it is known that there is an element s in GF(2") such that the
elements of {s¥"™,...,s", s2, s} are linearly independent. This element s is called a normal
generator, and the above set is called the normal basis. An element in GF(2?) a = (ag-1,--.,a0)
corresponds to the polynomial ap_152""" + -+ +a15% + ags.

The addition in GF(2") is done in the same way as the polynomial basis case. Normal basis
allows for a very fast squaring: it can be done by one shift operation, but multiplication is
more complex than in polynomial basis. The Massey-Omura algorithm[10] and some improved
algorithms have been proposed for multiplication[20], but the normal basis representation seems
more appropriate for hardware, as some references reported[3, 4, 5, 15, 25].

119

2%_th power operation by using normal basis requires only & cyclic shift operations, and it
can be computed very fast.
Example 1 Let n = 3, p(z) = 23+ z + 1, A = (ag,a1,0a0) and B = (bg,b1,bp). Then A? =
(a1,a0,02) and A* = (ag,a2,a1). If AB = (c2,c1,¢0) denotes the product of A and B, each
output bit of AB is obtained as follows.

c2 = (ag+ag)(bs+bo) + (ag + a1)(bo + b1) + azb2
a = (a1+a2)(bi+b2)+ (a2 + ag)(b2 + bg) + a1by
co = (ao+a1)(bo+ b))+ (a1 + a2)(b1 + b2) -+ aobo

3.3 Table lookup

Generally speaking, table lookup ‘achieves rather high speed. The problem is that the size of
the table grows as the extension degree n increases. The upper bound of the table size and the
efficiency of table lookup depend on the computer environment such as the sizes of memory and
cache.

For example, we have three ways of realizing table lookups for computing F(z) from z.

(1) lookup the table of the map z + F(z) directly -
(2) use the table of the inversion map(11]
(3) use the exp-log lookup tables[25]*

When aiming at the highest speed by the table lookup method, method (1) is suitable for a
fixed function. On the other hand, tables (2) or (3) are of wider use, that is, they are useful for
various products, power functions, inversion, and so on. In this paper, we use method (3).

3.4 Use of maps of coordinate functions

A function F' in GF(2") is also represented by the list of n coordinate functions (fn—1,- .-, fo),
where f; is a polynomial with n input variables. In advance we construct the polynomial of each
coordinate function, where some improvement in computation speed is possible by finding the
expression requiring the smaller number of operationst. There is a problem that the construction
and optimization of the polynomlals become more difficult as the extension degree n or the
algebraic degree of f; increases. However, using maps of coordinate functions and table lookup
together is effective for a large extension degree n, as we show later.

3.5 Successive extension

It is known that a field can be considered as a vector space of one of its subfields. In this
section we discuss the computation of operations in GF(2") using successive extension. All
methods explained previously are concerned with the single extension field of GF(2). Generally
speaking, every method based on a single extension field requires a larger number of calculations
as the extension degree n increases, however, we can reduce the number of calculations by using
successive extension.

~In [25], they call them log-table and alog-table.
t Actually the DES implementation in software using the similar method (“Bit-slice DES”) gains a significant
speedup[2}.

120

When 7 can be factorized to some integers n; and ng, an element of GF(2") can be repre-
sented as a polynomial o, 2™ ™! + -+ - + @17 + ap, where a; are elements of GF(2™). Here
GF(2") is the extension field of GF(2"?) with extension degree n;.

When n; and n2 are relatively prime, an irreducible polynomial with degree n; over GF(2) is
also irreducible over GF(272). In this case the implementation of functions in GF(2") is rather
easy. De Win et al. succeeded in slightly improving the operations in GF(2") for (n1,n2) =1
by using exp-log operation tables[25]. When (n1, ng) # 1, Aoki et al.[1] improved the operations
in GF(2%%) which is equivalent to GF((2!%)?). They constructed an irreducible polynomial with
degree 2 and a normal basis over GF(2'6) for faster multiplications in GF(2%?). In general, it
is not easy to find an irreducible polynomial with degree n; over GF(2"?) when n; and no are
not relatively prime. In this paper, we will consider only the case of (n1,n2) = 1.

Example 2 We show an ezample of the polynomial representation of the element in GF(25) =
GF((2%)?). Since?2 and 3 are relatively prime, an irreducible polynomial 22 +z+1 over GF(2) is
also irreducible over GF(23). So we can represent an element in GF(25) as follows, considering
GF(2%) as the successive extension field GF((2%)?);

(asy? + asy + az)z + (a2y® + a1y + ag), @i € GF(2).

Example 3 If (p,q) # 1, an irreducible polynomial with degree p over GF(2) is not irreducible
over GF(29) in general. For ezample, an irreducible polynomial z3 + z + 1 over GF(2) can be
factorized over GF(28) = GF(2)[y]/Id(y® + y + 1) into two polynomials as follows.

+?+ P+ + P+ +y)z+yt 7 +y)

4 Performance of cubic function in GF(2")

In this section, we examine the computation times of the cubic functions z3 in GF(2") for
3 < n < 65 by various methods. If n is odd, the cubic function z® in GF(2") has been
proved to be an almost bent and almost perfect nonlinear bijective function, namely, its maximal
differential/linear probability is 2! ™™ (see Table 1). Strictly speaking, the performances of other
power functions z* in GF(2") with k # 3 are not the same as that of z3. However, those of
£+ in GF(2"), in particular, which are also almost bent and almost perfect nonlinear when
ﬂcd"m are odd, can achieve almost the same performance as 23 by tuning the algorithm because
of the same Hamming weight of their extension degree.

We executed the tests on a Sun Ultra 1 (UltraSPARC 170MHz) with 448MB memory and
512KB second cache. We used gcc compiler version 2.6.3.

4.1 Single extension

Figures 1 and 2 show the execution times of function z3 in GF(2") over GF(2) by using single
extension field adjoining the single root of p(z) with respect to a polynomial basis and a normal
basis, respectively. If n is a prime number, GF(2") must be dealt with as the single extension
field of GF(2).

4.2 Table lookup

Some people assume that the difference in execution times of different sizes of lookup tables is
negligible, however, such assumption is not true according to our experiments. Figure 3 shows
the execution times for calculation of z3 in GF(2") by using exp-log lookup tables.

121

35 35
boie”| norrtial bade” 4—
30 30
471
25] 25
. #,‘/ . |1
-.: » v £ 2
to]
] P é /
2 15 4 15
A
10 10
//
5 St s Pt
[A1 =
/,.‘.uw"*’ |
[0
2 4 6 810121416 4 s 2 3 4 5 6 7 8 9 1011 12 13 W 15 16 17
Extension degroe (1) . Eatension degrec (n)

Figure 1: Execution time by single exten- Figure 2: Execution time by single exten-

sion (polynomial basis) (us.) sion (normal basis) (us.)
1 : - — 35
“table fooklup'| =1~ o e T
30
075
25
£ E »
E o £
5. E 1s
"
025 10
1 : //
SNENEEEE . g v V ’ | 141
023436789lOll12l3l4l5161718l9202|22 02 3 4 5§ 6 7 8 9 10 1 12 13 14 i5 16
Eatension (0 Extension degtee (8)

Figure 3: Execution time by table lookup Figure 4: Execution time by using COOI‘dl—
(us.) nate functions (us.)

We find a sharp increase in the execution time at the “threshold” value which is about n = 16
in Figure 3. This phenomenon may come from cache mis-hit. This “threshold” value depends
on the computer architecture. The lookup table of a power function in GF(2") requires 2-w-2"
bits, where w is the word size in bits of the processor. Since we used a computer with 512KB
second cache, the size of the lookup table exceeds the cache size if n is bigger than 16. When we
also conducted the same experiment on another computer with 256KB second cache, there was
a steep rise at about n = 15.

4.3 Use of maps of coordinate functions

Figure 4 shows the execution times of z3 in GF(2") by using coordinate functions!. This method
has an advantage in that coordinate functions can be calculated in parallel. However, parallel
computation of coordinate polynomials are hard to realize with software implementation, and
moreover, only a part of the resource can be used (e.g. one bit operation in 32-bit CPU).
Therefore, direct use of this method would be inefficient.

4.4 Successive extension

Figure 5 shows the execution times by using successive extension. Assume that n can be fac-
torized into m; and n,, where n; < ng. In this paper, we consider only the cases of extension
of degree n; € {2,3,4,5}. Calculations of coefficients in GF(2"?) are done by table lookup, and

tFor construction of coordinate functions, we used the computer algebra systéh Risa/Asir[16].

122

S
i

Execution time

=

O N WA U AN B v

468101

Exensiondegroa(n) |

2n : extension of degree 2 over GF(2"2) (3 < n2 < 22)
3n : extension of degree 3 over GF(2"2) (3 < na < 20)
4n : extension of degree 4 over GF(2"2) (3 < n2 < 15)

5n : extension of degree 5 over GF(2"2) (3 < n2 < 13)

Figure 5: Execution time by using successive extension (us.)

extension of degree n; is calculated by using coordinate functions. Since n; is rather small, the
coordinate function is simple enough to optimize. For each extension degree n;, the required
times of operations in the coefficient field GF(2™2) are as follows.

1y | # of cubings | # of squarings | # of multiplications
2 1 0 3
3 5 2 3
4 7 4 8
5 10 5 16

Only for the case of nj = 2 and ng = 16, are they {2,2,4}. Note that we do not know
whether the numbers of the operations above are minimal or not.

4.5 Our best execution times of x3 in GF(2") for 3 < n < 65

Of the various algorithms we used for computing 2% in GF(2") for 3 < n < 65, we plot the best
execution times in Figure 6. The list of execution times and the algorithms we adopted appears
in Appendix A. Generally speaking, z° in GF(2™) can be computed fast 1. when n is small
(< 20) by table lookup, and 2. when n is factorized and the technique for successive extension
is available. :

5 Construction of block ciphers with high security and perfor-
mance '

We considered speed and security separately in the previous chapters, however, in this section
we discuss which combination of z* in GF(2") yields 64-bit block ciphers with high security and
high speed using the execution times of cubic functions derived in Section 4. Strictly speaking,
the performances of power functions in GF(2") with k # 3 are not the same as that of z3.
However, those of 22+! in GF(2"), in particular, which are also almost bent and almost perfect
nonlinear when 7 d"t,n are odd, can achieve almost the same performance as z3 by tuning the
algorithm because of t{]e same Hamming weight of their extension degree. Therefore, we discuss
the construction of block ciphers using Matsui’s structure with high performance and security
using the execution times of z* in GF(2”) for 3 < n < 65 only for k = 3.

123

it

35

atf’ e
) il
F - . 1r
g 15 _i l I
o LR
15 .ex.X \ t
A ML

[
2 4 6 8 10121416182022242628303234363840424446485052545658606 264666870
Extension degree (n) -

Figure 6: Execution time of 23 over GF(2") (us.)

m,
S

Figure 7: Matsui’s recursive structure

Figure 7 shows the most inner part of the recursive structure described in [13]. When the
input string is divided into my-bit and ma-bit (m1 > me), this division is denoted by [[m1, m2]].
For the structure shown in Figure 7, the following theorem is proved[13]. We find the block
cipher with high speed and maximal differential/linear probability 2762 ysing this theorem.

Theorem 1 [13] In Figure 7, assume that f1, f2, and f3 are bijective and the mazimal differ-
ential/linear probabilities are smaller than p1, p2, and ps, respectively. If the entire function F
shown in the figure has more than three rounds, then the mazimal differential/linear probability
of F is smaller than

max {p1P2, paps; 2™ "*p1p3}-

5.1 Division of 16-bit input/output (i.e. when m, + m. = 16)

First, we consider the case where 16-bit input/output is divided into m;-bit and me-bit at the
most inner part of Matsui’s recursive structure. We can expand it to the entire block cipher
with 64-bit input/output recursively like MISTY[13].

From the view point of speed, every combination of m; and mg, s.t. my +mz = 16 is similar
on an usual PC or workstation with 256 ~ 512KB cache. This is because the execution times

124

of power functions over GF(2") for n < 16 by using table lookup do not differ greatly (see
Figure 3).

In terms of security, however, there is some difference. Consider the division of 16-bits
into two even numbers. In this case, according to Theorem 1, the maximal differential/linear
probability is smaller than

max {22—m1 22—m2’ 22—m222-m1’ 2m1—m222-m1 22—m1} - 24-—16 — 2—12.

Note that if ged(k,2® — 1) # 1, then z* in GF(2") is not bijective. For example, the cubic
function is not bijective when n is even. When 16-bits is divided into two odd numbers, the
maximal differential/linear probability is smaller than

max{zl—n’uzl-—mz’ 21—m221—m1’ 2m1—m221—m121——m1} — 22—-16 = 2—14.

From these discussions, it is concluded that the division of 16-bits into two odd numbers is
better. Therefore, the candidates of the division are [[15,1]], [[13,3]], [[11,5]] and [[9,7]]. Consid-
ering the size of tables, the division [[9,7]] is the best.

5.2 Division of 32-bit input/output (i.e. when m, + m, = 32)

If we expand the 16-bit function discussed above (where the division is [[9,7,9,7]]) to a 32-bit
function like the function FO of MIST'Y[13], the maximal differential/linear probability of this
function is smaller than (2714)2 = 2728 according to Theorem 1. So is there any division of
32-bit that attains higher security? ‘

If we divide 32-bit input/output into two even numbers, then the maximal differential/linear
probability is smaller than

max {22——1111 22—m2, 22—m2 22-—m1 , 2m1—-m222—m1 22-m1} —_ 24—32 — 2-—28.

which is the same as the case above. If we divide 32-bit input/output into two odd numbers,
then the maximal differential/linear probability becomes smaller than 2730,

Let m; and my be odd numbers s.t. m; + mg = 32. Since it is impossible to divide an odd
number into two odd numbers, some power functions in GF(2™) and G F(2™2) have to be used.
We have to use the successive extension method for m; > 17, since the table lookup would be
inefficient. Considering that m; should be small enough for table lookup or be factorized into
relatively prime integers, the candidates of the division are [[27,5]], [[25,7]], and [[21,11]).

If we calculate the execution time using the timing data in Appendix A, the division [[21,11]]
attains the fastest performance;

0.11 + 2 x 0.81 = 1.73 (us). ' (1)
On the other hand, the execution time of the division [[9,7,9,7]] is
3 % (0.10 + 2 x 0.09) = 0.84 (us). 2)

This means that the division [[21,11]] improves the security in terms of differential/linear prob-
ability (273 v.s. 2728), but reduces the performance by half.

125

5.3 Division of 64-bit input/output (i.e. when m, + m, = 64)

Similarly, consider the division of 64-bit input/output. Using the same argument in the previous
subsections, the division into two even numbers does not achieve higher security than that based
on the division of 32-bits. Therefore, we consider the division of 64-bits into two odd numbers.
In this case, the maximal differential /linear probability is smaller than 2792, which is the smallest
- value of the upper bound for the maximal differential/linear probabilities of block ciphers with
64-bit input/output.

For higher performance, we should use table lookup, and avoid using the division where the
construction of the successive extension field is complicated. Then the remaining candidates
are [[55,9]] and [[51,13]]. Since these divisions have the same level of security, we calculate the
execution times of the block ciphers with 18 rounds, for example, constructed based on these
divisions. Note that we consider the exclusive-or operations for each round as negligible and
don’t consider parallel computation for simplicity.

(55,9]] : 2.93 x9+0.09 x 9=27.18 (us)
[51,13]] : 6.67x9+0.12 x 9 = 6L.11 (us)

The block cipher based on the division [[55,9]] is about twice as fast as that based on [[51,13]].
On the other hand, the speed of the block cipher with 18 rounds constructed based on the division
[[9,7]] discussed in Section 5.1 is estimated as below (using the data “0.84” in equation(2)).

0.84 x 18 = 15.12 (us)

This also means that the division [[55,9]] improves the security in terms of differential/linear
probability (2762 v.s. 2756), but deteriorates the performance.

5.4 Resistance to higher order differential attack

The higher order differential attack[6] is an algebraic attack based on the higher order
differentials[9] of the coordinate functions. Consider a 64-bit block cipher with the structure
shown in Figure 7 with 2r rounds. Note that it has no recursive structure like MISTY. Because
the coordinate polynomials of the function 22+ in GF(2") over GF(2) is quadratic, this cipher
has 64 coordinate functions with degree 2'. Assuming the attack of 2-round elimination, to
resist to the higher order differential attack, the following inequality must hold: 272 > 64, that
is r > 8. Therefore, this cipher needs at least 17 rounds. Details of the improved higher order
differential attack are written in [22].

We can construct a Feistel cipher like MISTY1[13] based on the division [[21,11]] discussed in
Section 5.2. Although this block cipher has maximal differential/linear probability 2%°, which
is larger than 2792, it needs only at least 9 rounds to resist to the higher order differential
attack, assuming the attack of 2-round elimination. The performance of this cipher is estimated
as 1.73 x 9 = 15.57 (us), where the data “1.73” was derived in equation(1).

6 Conclusion

We presented a block cipher which has the best performance of all 64-bit block ciphers with the
smallest proven differential/linear probability 2762 ysing the structure proposed by Matsui. It
was the unbalanced Feistel cipher shown in Figure 7 where f, and f3 are 22 *1 in GF(2%) and
f2 is o2 t1 in GF(2°) for some positive integers ¢. The number of rounds should be more than
17 to resist to the higher order differential attack.

126

The performance depends on the computing environment and the programmer’s skill of im-
plementing. For the former, the assumed computing environment is an usual PC or workstation
with 256 ~ 512KB cache. For the latter, in general, power functions in GF(2") can be imple-
mented fast 1. when n is small (< 20) by table lookup or 2. when n is factorized into relatively
prime integers so that the technique for successive extension be available. Therefore, the pre-
sented block cipher is expected to be the fastest of all 64-bit block ciphers with the smallest
proven differential/linear probability 2762 using the structure proposed by Matsui.

References

{1] K. Aoki, K. Ohta, “Fast Arithmetic Operations over Fy» for Software Implementation,” in Proc. of
SAC97, 1997.

[2] E. Biham, “A Fast New DES Implementation in Software,” in Proc. of the Fourth Fast Software
Encryption Workshop, pp.241-253, 1997.

[3] T.Itoh,S. Tsujii, “Algorithms over Finite Fields [I],” in Proc. of the 1987 Workshop in Cryptography
and Information Security, WCISS87-3 pp.51-60, 1987.

[4] T.Itoh, S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in GF(2™) Using Normal
Bases,” Information and Computation 78, pp.171-177, Academic Press, Inc., 1088.

[5] T. Itoh, S. Tsujii, “Structure of Parallel Multipliers for a Class of Field GF(2™),” Information and
Computation 83, pp.21-40, Academic Press, Inc., 1989.

[6] T. Jacobsen, L. R. Knudsen, “The Interpolation Attack on Block Ciphers,” in Proc. of the Fourth
Fast Software Encryption Workshop, pp.28-40, 1997.

[7) L. R. Knudsen, “Block Ciphers — Analysis, Design and Applications,” Ph.D.Thesis, Computer Sci-
ence department, Aarhus University, 1994.

[8] X. Lai, J. L. Massey, “Markov Ciphers and Differential Cryptanalysis,” Advances in Cryptology —
EUROCRYPT’91, Lecture Notes in Computer Science 547, pp.17-38, Springer Verlag, 1991.

[9] X. Lai, “Higher Order Derivatives and Differential Cryptanalysis,” in Proc. of “Symposium on
Communication, Coding and Cryptography,” in honor of James L. Massey on the occasion of his
60°th birthday, 1994.

{10] J. L. Massey, J. K. Omura, “Computational Method and Apparatus for Finite Field Arithmetic,”
US Patent No.4,587,627, 1981.

[11] T. Matsumoto, Y. Takashima, J.W. Machar, H. Imai, “Inverter-based Multiplier for Ciphers and
Codes,” in Proc. of the 1988 conference of IEICE, SA-7-5, A-1, pp.173-174, 1988.

[12] M. Matsui, “New Structure of Block Ciphers with Provable Security against Differential and Linear
Cryptanalysis,” Fast Software Encryption, Lecture Notes in Computer Science 1039, pp.205-218,
Springer Verlag, 1996. ’

[13] M. Matsui, “New Block Encryption Algorithm MISTY,” in Proc. of the Fast Software Encryption
Workshop, pp.53-67, 1997.

[14] A. J. Menezes, P. C. Qorschot, S. A. Vanstone, “HANDBOOK of Applied Cryptography,” CRC
Reference Series in Discrete Mathematics, CRC press, 1995.

(15] M. Morii, M Kasahara, “Computation algorithms over Galois fields,” in Proc. of the 1987 Workshop
in Cryptography and Information Security, WCISS87-4, pp.61-70, 1987.

[16] M. Noro, T. Takeshima, “Risa/Asir — a computer algebra system,” in Proc. of ISSAC’92,
pp.387-396, ACM Press, 1992. (anonymous ftp from endeavor.flab.fujitsu.co.jp, directory
/pub/isis/asir)

127

[17] K. Nyberg, “Differentially Uniform Mappings for Cryptography,” Advances in Cryptology — EU-
ROCRYPT’90, Lecture Notes in Computer Science 763, pp.55-64, Springer Verlag, 1994.

[18] K. Nyberg, L.R.Knudsen, “Provable Security Against a Differential Attack,” Journal of Cryptology
1995-8, pp.27-37, Springer Verlag, 1995.

[19] J. Pieprzyk, “How to Construct Pseudorandom Permutations from Single Pseudorandom Functions,”
Advances in Cryptology — EUROCRYPT"90, Lecture Notes in Computer Science 437, pp.140-150,
Springer Verlag, 1990.

[20] A. Pincin, “A New Algorithm for Multiplication in Finite Fields,” IEEE Transactions on Computers,
vol.38, No.7, pp.1045-1049, 1989.

[21] A. Pincin, “Bases for Finite Fields and A Canonical Decomposition for a Normal Basis Generator,”
Communications in Algebra 17(6), pp.1337-1352, 1989.

[22] T. Shimoyama, S. Moriai, T. Kaneko, “Improving the Higher Order Differential Attack and Crypt-
analysis of KA Cipher,” in Proc. of ISW'97, 1997.

[23] V. Shoup, “On The Deterministic Complexity of Factoring Polynomials over Finite Fields,” Infor-
mation Processing Letters 33 North-Holland pp.261-267, 1990.

[24] V. Shoup. “New Algorithms for Finding Irreducible Polynomials over Finite Fields,” Mathematics
of computation, Vol.54, No.189, pp.435-447, 1990.

[25] E. De Win, A. Bosselaers S. Vandenberghe, P. D. Gersen, J. Vandewalle, “A Fast Software Imple-
mentation for Arithmetic Operations in GF(2"),” Asiacrypt’96. Lecture Note in Computer Science
1163, pp.65-76, Springer Verlag, 1996. ;

128

Appendices

A Execution times of z3 in GF(2")

The following table shows the execution times of z° over GF(2") and the algorithms we adopted.
The tests were executed on a Sun Ultra 1 (UltraSPARC 170MHz) with 448MB memory and
512KB second cache. We used gcc compiler version 2.6.3. The meanings of the abbreviations in
the column of “algorithm” are as follows:

table lookup : table lookup by using the exp-log table

axb : successive extension with degree a over GF(2%)
poly. base : single extension over GF(2) using polynomial basis
n | time (us) | algorithm 34 3.30 | 2 x17
3 0.10 | table lookup || 35 290 |57
4 0.10 | table lookup || 36 22714x9
5 0.09 | table lookup || 37 17.89 | poly. base
6 0.09 | table lookup | 38 44712 x 19
7 0.10 | table lookup || 39 1.69 | 3 x 13
8 0.10 | table lookup || 40 287 14x%x8
9 0.09 | table lookup || 41 19.66 | poly. base
10 0.10 | table lookup || 42 1.74 13 x 14
11 0.11 | table lookup || 43 20.64 | poly. base
12 0.13 | table lookup || 44 230 14 x 11
13 0.12 | table lookup || 45 289|5x%x9
14 0.15 | table lookup |l 46 21.89 | poly. base
15 0.14 | table lookup || 47 22.44 | poly. base
16 0.17 | table lookup || 48 28413 x 16
17 0.25 | table lookup [} 49 23.37 | poly. base
18 0.42 | table lookup | 50 23.83 | poly. base
19 0.53 | table lookup || 51 6.67 | 3 x 17
20 0.61 | 2 x10 52 349 | 4 x 13
21 0.81 | table lookup || 53 25.06 | poly. base
22 067 |2x11 | 54 25.34 | poly. base
23 4.91 | poly. base 55 2935 x 11
24 1.12 | 3 x12 56 26.48 | poly. base
25 5.06 | poly. base 57 9393 x19
26 0.97 | 2 x13 58 27.45 | poly. base
27 5.61 | poly. base 59 27.91 | poly. base
28 2.26 | 4 x7 60 3.71 3 x20
29 5.95 | poly. base 61 28.78 | poly. base
30 0.90 | 2 x15 62 29.34 | poly. base
31 6.21 | poly. base || 63 29.63 | poly. base
32 1.64 | 2 x16 64 30.29 | poly. base
33 1.13 | 3 x11 65 414 | 5 x 13

Table 2: Execution times of z° in GF(2")

129

B Irreducible polynomials over GF(2")

The following is a list of irreducible polynomials over GF(2") for 2 < n < 69, primitive elements,
and normal generators used in our experiments. In the second column we give irreducible
trinomials z” + zP! + 1 represented by p; if they exist, otherwise z" + P! + P2 4 P2 41
represented by p;, p2, p3.

irreducible | primitive | normal
n | polynomial | element generator || 35 | 2 T 233
p1(, 02, D3) 3619 z+1 g+ +x
2|1 z z 37164,1 T g3l
311 z z+1 38 | 6,5,1 T z33
411 T z3 3914 T 35
512 z z3 40 | 54,3 z 235
611 T zd 411 3 x z+1
711 z 341 4217 Z2+z+l1 |25 +234+2
8|43, z z8 43| 6,4,3 z z37
911 224+z+1|z+1 44 |5 22+z+1 |3
10 | 3 z z7 45| 4,3,1 z z+1
1112 z x? 46 | 1 24+z+1 |z
1213 rz+1 P4z 4715 T z+1
134,31 T z° 48 | 5,3,2 z+1 z%
1415 224z+1| 2 4919 z z+1
151 T l2"+1 50 | 4,3,2 T z47
16 | 5,3,1 z+1 z!! 5116,3,1 z z%
1713 z z+1 5213 z e
18 | 3 3+ ¥ +z 53 | 6,2,1 T z47
19 | 5,2,1 z z'7 54109 2+ ¥+ + 2
20| 3 z 7 55| 7 z+1 z+1
21| 2 z z19 56 | 7,4,2 z z¥
2211 T 21 57| 4 Z2+z+1]| 25
23 |5 z z+1 58 | 19 z z39
24 | 4,3,1 z z4 59 | 7,4,2 z x5
2613 T z4+1 ~He0{1 z 59
26 | 4,3,1 z+1 z23 61| 52,1 z 59
27 | 5,2,1 z z+1 62| 29 z+1 z33
281 2+z+1| 2 6311 T 41
29 | 2 z z27 64 | 4,3,1 z z81
301 +z+1| 2% 65 | 18 T z47
313 T g +1 66 | 3 z+1 283 4 25
321732 z+1 z% 67 | 5,2,1 z 295
33110 z+1 z23 6819 T 59
34 |7 B+l 69 | 6,5,2 z z93

130

Fast Arithmetic Operations over Fon

for Software Implementation
Kazumaro AOKI Kazuo OHTA
maro@isl.ntt.co.jp ohtaQisl.ntt.co. jp
NTT Laboratories?

Abstract

This paper discusses the representation of a finite field with characteristic 2, and proposes arithmetic
operations over the field using a successive extension of the field. We develop a fast inversion algorithm,
and compare its speed with the previous algorithms, and consider their applications. We confirm that
our algorithm is effective and suitable for software implementation.

1 Introduction

Recently, many secret key block cipher algorithm construction methodologies have been presented because
the two strong attacks of differential cryptanalysis [BS93] and linear cryptanalysis [M94] have broken various
cipher algorithms designed by old construction methodologies. An important subject for the construction
of a strong F-function is how to construct an S-box which is nonlinear primitive of a cipher. For example,
Nyberg and Knudsen proves that a Feistel cipher, including strong F-functions, is secure against differential
cryptanalysis [NK95] and Nyberg proves the cipher is secure against linear cryptanalysis [N95]. At present,
we know that some types of a monomial function, for example z2, and an inversion function, 2! over a finite
field are most secure against differential and linear cryptanalysis [NK95, CV95]. So we can construct a block
cipher algorithm using the monomial functions as an element which permits security against differential and
linear attack?. :

It is well known that the arithmetic operations over finite fields are very important because they
are used by cryptology and coding theory and so on. The arithmetic operations over finite fields with
characteristic 2 must be discussed because their data structure is sufficiently clear to simplify implementation.
Though hardware implementation of fast arithmetic operations over finite fields has been well studied,
software implementation did not so sufficiently. Since recent computer power has increased dramatically,
software implementations become also important.

This paper discusses representations of finite fields with characteristic 2 at first, and presents fast
algorithms for arithmetic operations over the fields and their applications. Our inversion algorithm requires
about 1.5 times of complexity of multiplication, while the previous algorithms requires greater than 2 times
of complexity of multiplication.

Note that we use the notation F, as a finite field which contains ¢ elements.

2 Previous Algorithms and Our Results

Research on speeding up arithmetic operations over finite fields, especially those with characteristic 2,has a
long history, because they have many practical applications. An important problem is how to represent the
element of a finite field. The previous implementations use a standard basis, or a normal basis, or subfields
or combinations of these representations.

Let f(X) be an irreducible polynomial with degree n, then we have Fy[X]/(f(X)) = Fan. So, we can
regard an element of Fan as a polynomial over F, with degree less than n. Then, a multiplication can be
calculated by simple polynomial multiplication and modulo reduction, and an inversion can be calculated
by the extended Euclidean algorithm.)

Massey and Omura used a normal basis for a multiplication over Fy» [MO81]. If we use a normal
basis over Fy, a squaring can be calculated by a cyclic shift, and a multiplier can be permitted by parallel

11-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239 Japan
2However, since there are many attacks without differential or linear attack, a block cipher construction requires other
security elements.

131

construction. However, an inversion is not easy to calculate. Itoh and Tsujii proposed an inversion algorithm
over Fy» [IT87] using a normal basis. Their algorithm is based on the formula of 7! = 27 -2,

Almost of earlier algorithms are considered for hardware implementation except the works described
below. So, we consider algorithms for software implementation. If we use a standard basis or a normal
basis over the prime field Fy, we have slow software implementations, because the construction based on
F, require many bit-operations instead of word-operations which are fast for software execution. On the
other hand, an algorithm using a subfield yields a fast software implementation if we specify an appropriate
subfield, for example Fys, because we can calculate all of operations over the subfield and memorize them
in advance, and then we can reduce a field operation to subfield operations using word-operations.

Pincin proposed an algorithm for the finite field Fp» using a normal basis over subfields and successive
extension [P89]. The algorithm combines several operations which are basically the same operation into one
operation for enhancing the speed. It is effective if n has many divisors.

Harper, Menezes, and Vanstone implemented arithmetic operations over Fai0¢ using a standard basis
over subfield Fos [HMV93]. They also implemented arithmetic operations over Fjios using an optimal normal
basis. As aresult, their subfield implementation is faster than a normal basis implementation. Recently, Win
et al. implemented arithmetic operations using a standard basis over a subfield [WBV*96]. They optimized
arithmetic operations using an irreducible trinomial with coefficients 1.

Paar introduced useful condition of a quadratic extension of a field with characteristic 2 for a ef-
fective multiplication algorithm [P96, Sect.4.2]. However, this condition was not well studied. This paper
discuss a successive quadratic extension of a field with characteristic 2 and arithmetic operations not only a
multiplication but also a squaring and an inversion.

3 Finite Extension of F»

Earlier algorithms for arithmetic operations did not give a generic construction method for Fsa. So, an
irreducible polynomial and its normal basis were found heuristically. Thus, special algorithm, for example
[S90], is required for getting an irreducible polynomial. We will explain how to construct a quadratic
irreducible polynomial and its normal basis. ’

3.1 Construction of a Quadratic Extension of a Field with Characteristic 2

Lemma 1 :
Assume that a quadratic polynomial of X,

X?4+X+z (z€Fom) 6))
is irreducible over Fy». Then, a quadratic polynomial of X,
X2+ X + 2w

is irreducible over Fa2a = Fyn (w) where w is a root of X2 + X +2z = 0.
Proof) The proof is by contradiction. Let z + yw (z,y € F2») be a root of X2+ X + 2w = 0. Using
w? +w+ 2z =0, we have

(z+yw)?+ (z+yw) + 2w = (22 + 22 +2) + Y +y + 2w =0.
Since Fy2. is a vector space over Fan, and 1 and w are linearly independent,
Y +y+z=0

holds. The condition contradicts with Eq. (1). Then, X? + X + 2w is irreducible over Fza. .

132

3.2 Normal Basis of Fs» for a Quadratic Extension

Based on the construction presented in Sect. 3.1, we assume
F22n = Fon (a).

That is; a is a root of
X2+ X+a=0 (a€F). (2)

Since the left side of Eq.(2) is irreducible over Fsn, we have o € Fa». Then, we have
(a+1)2+(a+1)+e=0a’+a+a.
So, if a is a root of Eq. (2), (a + 1) is also a root of Eq. (2).

Let both sides of Eq. (2) be raised to the 2™-th power. Since (@® + a + a)?" = (e2")2 4+ a®" +a =0,

we have 0" = aor @+ 1. If ¢*" = a holds, then a € F» holds. That is a contradiction of the assumption.

Thus, we have 0" = a+ 1. That is; a is a normal basis generator, and
[@c®]=laa+1]

holds.

4 Arithmetic Operations in a Quadratic Extension Field with
Characteristic 2 Using a Successive Extension

Pincin pointed out that a successive extension using a normal basis is effective [P89)], and Paar pointed
out that a quadratic extension using a standard basis is effective [P96, Sect.4.2] for multiplication. So, we
expect that other operations which are a squaring and an inversion are also effective. This section discusses
successive quadratic extension and compares with a standard basis and a normal. basis. We assume that the
finite field Fy2. is represented using a as the quadratic extension of Fy» based on the previous section which
means that o satisfies the equation o? + a + @ =0, and Fa« contains variables z; and y; (i = 1,2, 3).

4.1 Standard Basis

In this section, we use the standard basis, [1 a]. So, any element of Fy2. can be represented by the form of
z +ya (z,y € Fan).

4.1.1 Addition
It’s trivial to calculate by the following equation.

(1 +y10) + (22 + y20) = (T1 + T2) + (11 +¥2)
Based on the equation above, we develop the following algorithm.

Algorithm 1 (Addition (Standard Basis))

Input: (z1,91), (T2,72)
Output: (z3,ys3)

Step 1: 73 := 21 + 75
Step 2: y3 :=y1 + 42

So, we can calculate an Fj2.-addition using 2 Fy.-additions.

133

4.1.2 Multiplication
"Refer to [P96, Sect.4.2], we have

(z1 + y10) X (T3 +y20) = (2122 + ay1y2) + (1 + 1) (T2 + ¥2) + T172)c.

Based on the equation above, we develop the following algorithm.

Algorithm 2 (Multiplication (Standard Basis))

Input: (z1,¥1), (%2,%2)
Output: (z3,ys)

Step 1: t; :==21 + 11

Step 2: ty ;=23 + Y2

Step 3: t; :=1; X 1o (=. (z1 + y1)(£L‘2 + yz))

Step 4: t3 :=x; X 2o

Step 5: ys :=t1 + 12 (= (21 + 41)(22 + y2) + 2172)
Step 6: &) :=y; Xy

Step 7: t1 :=a X t; (= ay1y2)

Step 8: 23 :=1; + {2 (= 2122 + ay1y2)

So, we can calculate an Fyz«-multiplication using 4 F3~-additions and 4 Fs» -multiplications.

4.1.3 Squaring

Simplify the equation used by the multiplication algorithm, then we have
(@1 +110)* = (21 + ap}) +vien

Based on the equation above, we develop the following algorithm.

Algorithm 3 (Squaring (Standard Basis))

Input: (21,%1)
Output: (z3,ys)

Step 1: y3 :=y?

Step 2: t; :=a X y3 (= ay?)

Step 3: ty := 23

Step 4: z3:=t; +t3 (=22 + ay?)
So, we can calculate an Fa2.-squaring using an Fy»-addition, an Fas-multiplication, and 2 Fy«-squarings.

4.1.4 Inversion

Using the property of norm, since Sect. 3.2 shows that the conjugate of o is & + 1, we have
(21 + 10) (@1 +yi(a+1)) = (21 +y1) + agi.
So the inverse is obtained by the following equation3.
(21 + 1) 7! = (z1(z1 +31) +ayd) (21 + v1) + v10)
Based on the equation above, we develop the following algorithm.

Algorithm 4 (Inversion (Standard Basis))

3This equation can also be obtained by the extended Euclidean algorithm.

134

Input: (1,91)
Output: (zs3,ys)

Step 1:), :=z,+y;

Step 2: i —t1 Xz (— 2?1(1'1 +y1))

Step 3: t3:=y?

Step 4: i3 :=a x t3 (= ay?)

Step 5: ty :=ts + 13 (= 21(z1 + 1) +ay?)

Step 6: iy := ;" (= (z1(z1 +31) + ay}) ™)

Step 7: z3:=1; X 3 (= (21 + y1)(z1(z1 +11) +ay D
Step 8: y3 :=y1 X ta (=y1(z1(21 + 1) + ay})™?)

So, we can calculate an Faz.-inversion using 2 Fon-additions, 4 Fa»-multiplications, an Fj»-squaring, and
an Fyn-inversion.

4.2 Normal Basis
In this section, we use the normal basis, [@ @ + 1]. So, any element of Fy2. can be represented by the form
of za + y(a + 1) (z,y € Faa).
4.2.1 Addition
It’s trivial to calculate by the following equation.
(1 +y1(a+1)) + (@2a +y2(a+ 1)) = (21 + z2)o + (y1 + 1)@ + 1)

Based on the equation above, we develop the following algorithm.
Algorithm 5 (Addition (Normal Basis))

Input: (21,41), (Z2,%2)
Output: (zs3,ys)

Step 1: z3: =12, + 24
Step 2: ys :=y1 +¥2

So, we can calculate an Fy2.-addition using 2 Fya-additions.

4.2.2 Multiplication

A multiplication of two elements is calculated by

(ma+y(a+1)) x (za+y(a+1)) = (2132 +a(z; +u1)(z2 + Y2)
+ (192 + a(z1 + y1) (22 + 32)) (a + 1).

Based on the equation above, we develop the following algorithm.

Algorithm 6 (Multiplication (Normal Basis))

Input: ($1,y1), (m2’ y2)
Output: (z3,y3)

Step 1: &, := 21 + 13

Step 2: &5 ;=25 + 19

Step 3: 1 := 11 X 1 (= (21 + 41)(z2 + ¥2))

Step 4: t; ;= a X 1y (=a(z1 +y1)(z2 + ¥2))

Step 5: ty:= 11 X 19

Step 6: z3:=1; + 13 (= 2122 + a(z; +11)(Z2 + ¥2))
Step 7: {9 :=y; Xy

Step 8: y3 :=t1 +12 (= y1y2 + a(xy +y1) (22 + y2))

So, we can calculate an Fy2n-multiplication using 4 Fa.-additions and 4 Fs.-multiplications.

135

4.2.3 Squaring

Arranging the formula of the multiplication for a squaring, we have
@a+y(a+1))’ = (@ + a(z} +v]))o + (4 +a(z? + 1))@+ 1).
Based on the equation above, we develop the following algorithm.

Algorithm 7 (Squaring (Normal Basis))

Input: (21,%)
Output: (zs3,ys)

Step 1: t; := z?

Step 2: ty :=y?

Step 3: t3:=1; + 12 (= 22% + y%)

Step 4: t3 :=a x t3 (= a(z? +y}))

Step 5: z3 :=t; +t3 (=7¢ +a(z? +3?))
Step 6: y3 1=ty +t3 (= ¥ + a(z? +¥?))

So, we can calculate an Fy2.-squaring using 3 Fa--additions, an Fa.-multiplication, and 2 Fgn-squarings.

4.2.4 Inversion

We calculate similar to the case of the standard basis. Using the property of norm, then we have
(@i +yi(a+ 1)) me+zi(e+1)) = a(z1 +31)? + 2191
So the inverse is obtained by the following equation®.
(o +yi(a+1))7! = (ale1 +1)* + 2ap) (o + za(a+ 1))
Based on the equation above, we develop the following algorithm.

Algorithm 8 (Inversion (Normal Basis))

Input: (z1,71)
Output: (23,y3)

Step 1: £ =23

Step 2: ty:=2; +11

Step 3: 13 := 1§ (= (z1 +11)?)

Step 4: ty :=a Xty (= a(z; +11)?)

Step 5: t3: =z X1

Step 6: £y :=1s + 13 (= T1y: + a(zy + y1)2)

Step T tg = t2_1 (= (171:1/1 + a(:c1 + yl)z)_l)

Step 8: T3 =y X to (= yl(xlyl + a(zl +y1)2)‘1)
Step 9: y3 ;=11 X &3 (= z1(z191 + a(z1 + 11)%)7Y)

So, we can calculate an Fogzn-inversion using 2 Fa«-additions, 4 Fo«-multiplications, an F«-squaring, and
an Fya-inversion.
4.3 Comparison with the Standard Basis and the Normal Basis

The results of Sects.4.1 and 4.2 are summarized in Tablel. This table shows that the standard basis is
superior to the normal basis.

4This equation can also be obtained using a basis transformation and the extended Euclidean algorithm.

136

Table 1: Comparison between the Standard Basis and the Normal Basis

Number of Fan-operations :
F52.-operation Addition Multiplication Squaring Inversion | Depth

Addition Standard Basis 2 1

Normal Basis 2 1

Multiplication Standard Basis 4 4 3
Normal Basis 4 4 4

Squaring Standard Basis 1 1 2 3
Normal Basis 3 1 2 4

Inversion Standard Basis 2 4 1 1 5
Normal Basis 2 4 1 1 6

Note that ‘depth’ means a circuit depth which regards Fan» circuit as 1 circuit.

5 Estimation of Complexity

The algorithms proposed above reduce a field F,.,c operation to subfield F,,.-1 operations recursively®. So,
if we choose an appropriate subfield considering an implementation environment of computers and calculate
all subfield operations and store them in the memory in advance, we can enhance the performance of the
computer well.

We summarize the complexity of an F,.¢-addition in Table2, and the complexity of an F,.p-
multiplication in Table3, and the complexity of an F,..-squaring in Table4, and the complexity of an
. Fy.xt-inversion in Table5 using subfield F;- operations. This table is given by solving following recurrences.
We define A;® as the number of additions, and M;® as the number of multiplications, and S;* as the num-
ber of squarings, and I;® as the number of inversions over F,.2t-: required for an operation ‘op’ over Fyqz.
‘Addition’ is abbreviated to ‘add,’ and ‘multiplication’ is abbreviated to ‘mul,’ and ‘squaring’ is abbreviated
to ‘sqr,’ and ‘inversion’ is abbreviated to ‘inv.’ These recurrences are easily derived from Table1 based on
the standard basis and easily solved (see Appendix A).

For example, we explain how to derive the recurrence of multiplication. Qur multiplication algorithm
requires the subfield multiplication and addition operations. So, we should consider the recurrence of AP
and MM, Since an-multiphcatlon is only derived from Fj2n.-multiplication and an Fj2.-multiplication
requires 4 Fya-multiplications, ,’?pi = 4M™"! holds. However, since Fya-addition is derived from Fyza-
multiplications and Fj2+-additions, and an F22n -multiplication requires 4 Fy»-additions and an Fzzn-a,ddmon
requires 2 Fya-additions, AR = 4Mmu! + 247! holds.

add __ mul
=1 ADUl = 0
A = 2434 ATl = 24P e
Mmul = 1
{ M::l_li] = 4 M;“ul

50ur algorithms have a recursive structure. So, you may worry about the overhead of a recursive call. However, since almost
application of the finite field Fon fixes n, the inline expansion can reduce the overhead.

137

{ sqr _ 0 { A%"v = 0 ‘
A = 24T HAMT + 5T v = 24P H4AMPY 4+ SV 21
g = (=0 i

ME = M5 B =AM Sl
{s“‘“zl {sg,nv=0'

S o= s Bo= asPr el

{ Iénv = 1
B o= I

Table 2: The Complexity of an F,.»c-Addition Using Fp.-Operations
Number of Fs.-additions (43°°) | 2¢

Table 3: The Complexity of an F,...-Multiplication Using Fy.-Operations

Number of Fa.-additions (AP*) 2.48-2.2¢
Number of Fy--multiplications (M™u!) 4t
Size of multiplication table ed4=-bit
Table 4: The Complexity of an F,.»-Squaring Using Fq.-Operations
Number of Fy.-additions (4;"") - (1+5)2
Number of Fa.-multiplications (M;¥) 14‘ 12‘
Number of Fa--squaring (S;*") 2t
Table 5: The Complexity of an F,.»-Inversion Using F3.-Operations
Number of Fy.-additions (A"") 3.4 —(6+%)2°+3
Number of Fy--multiplications (Mi™") 34120 -1
Number of Fy.-squaring (Si"¥) 2t—1
Number of Fy-inversions (Ii"¥) 1

For example these tables show that an ngz—mulmphcatlon requires 16 Fas-multiplications and 24
Fqs-additions® in the case of t = 2 and e = 8. In this case, this algorithm requires 64KB” memory. For
another example, this table shows that an Fgaz-multlphca,tlon requires 256 ng-multlphcatlons and 480
Fyz-additions. In this case, this algorithm requires only 32B memory.

We point out that there exists a trade-off between the complexity and the size of memory required.
This trade-off permits us to select an appropriate subfield for each computer.

6 Comparison with Previous Algorithms

6.1 Multiplication

Pincin proposed a multiplication algorithm over F,» which is fast if n is highly composite [P89]. We compare
our algorithm to his algorithm in Table6 for the case of a multiplication over Note that this case is
most effective for his algorithm.

Our algorithm reduce the number of bit-multiplications from 5! to 4! and the number of bit-additions
from I5' — 12! to 2-4* — 2-2*. The larger ¢ is, the more superior our algorithm is to Pincin’s algorithm.

Foa.

8If e is sufficiently small, several additions require only 1 computer ezclusive or operation in a well represented
implementation.

71B means 8-bit.

138

Table 6: Number of Bit Operations
Pincin’s algorithm Our algorithm
Number of multiplications 5t 4
Number of additions I5t — It 2-4—2.2¢

6.2 Inversion

We compare our algorithm to previous algorithm from two points of view.

6.2.1 Exponentiation with a Normal Basis and a Successive Extension

We compare our algorithm with Itoh and Tsujii’s Fyn-inversion algorithm [IT87]%. Their algorithm uses the
fact that 27 ~! = 1 over Fy» for calculating an inversion, while our algorithm is based on the extended
Euclidean algorithm and successive extension as explained in Sect.4.1.4.

Table 7: Number of Operations Required for Itoh’s Algorithm for an Inversion over Fa
Number of Fg~-multiplication |logy(n —1)] + Hy(n —1)+1
Number of F,-inversion 1
(Hy: Hamming weight)

We compare them over Fo6.2t realized in Table8. This table is derived from Table5 and Table7
{IT87]. We assume that the complexity of an Faic-inversion can be ignored because both algorithms require
only one Fase-inversion which has roughly the same complexity of an Fyic-multiplication. Then, we show
the two cases which are regarded as smallest and largest complexity. First, we assume that the complexity
of an Fyc-addition can be ignored for our algorithm. Secondly, we assume that the complexity of an Fa1e-
addition has the same complexity of Fais-multiplication for our algorithm. Both case we also assume that
an Fiis-squaring has the same complexity of Faic-multiplication for our algorithm. Since our algorithm does
not require an F,;¢.: -multiplication for calculating an F.,c.¢-inversion, we show the ratio of the number
of Faic-multiplications for calculating an Fye.o¢-inversion over the number of Faic-multiplications for an
F,16.2¢-multiplication in Table 8.

Table 8: Number of Multiplications Required for an Inversion
Our algorithm

Addition regarded as the same
complexity of multiplication

Itoh’s algorithm | Additions ignored

Fos (= Foig.01) 2 1.5 1.2
Foizs(= F215.23) 6 1.5 1.3
Foose(= F 6.0) 8 1.5 1.4

The number of multiplications for our algorithm converges about 1.5 if we ignore the number of
Fyi6-additions, or also converges about 1.5 if we regard that the complexity of Fas-addition has the same
complexity of Faie-multiplication, while the number of multiplications for Itoh’s algorithm asymptotically
diverges to infinity.

8toh’s algorithm is the most efficient technique in terms of minimizing the number of multiplications to compute an inverse
according to [ABMV93].

139

6.2.2 Standard Basis and Successive Extension

Win et al. proposed an Fyie..-inversion algorithm [WBV+96).. Since Win’s algorithm uses a standard basis
derived from an irreducible trinomial over the subfield Fyic with coefficients 1°, Win’s algorithm can be
applicable to the case where there exists an irreducible trinomial over a subfield, while our algorithm can
be applicable to the case where the field is 2-th extension of a subfield. The concrete construction of the
irreducible polynomial has been given in Sect.3 for our cases. '

The complexity of an inversion using subfield depends on how to choose a subfield considering the
table size required by implementation environment of a computer. Win’s algorithm directly uses the extended
Euclidean algorithm. Roughly speaking, the basic loop of the extended Euclidean algorithm requires about
extension degree subfield-multiplication/inversion and the number of the iteration of the loop is about two
times of extension degree, so this algorithm requires about two times of squaring of extension degree subfield-
multiplication /inversion. On the other hand, our algorithm requires about 1.5 times of squaring of extension
degree subfield-multiplication/inversion according to Sect.5. The superiority of algorithms depends on the
extension degree.

For example, we consider an Faze-inversion. Win’s algorithm requires about 2 - 11%(= 242) Foe-
multiplication /inversions, since they can choose a subfield as Faic and dme216 Foi7s = 11. Our algorithm

requires about 1.5 - 162(= 384) Fyu:-multiplication/inversions, since we can choose a subfield as Fou: and
dlmF Fo176 = 16. Thus, Win’s algorithm for an Fyire-inversion may be faster than our algorithm in this

case. If Fy22-multiplication /inversion table is acceptable in our case, our algorithm may be faster than theirs,
since dimp - Foirs = 8 and 1.5 - 82 = 96.

Let us consider another example, an Fazso-inversion. Win’s algorithm requires about 2 - 152(= 450)
F16-multiplication /inversions, since they can choose a subfield as Faic and dlszm Fy2¢0 = 15, Our algo-

rithm requires about 1.5 - 162(= 384) Fy:s-multiplication /inversions, since we can choose a subfield as Fais
and dimF215 Fs2¢0 = 16. Thus, Win’s algorithm for an Fa240-inversion may be slower than our algorithm.

7 Implementation of Application

We have implemented our algorithm written in ANSI-C. We timed our routines using Fas-multiplication
table and Faic-inversion table which require 256KB of cache memory. We used the GNU C compiler version
2.7.2.2 and executed the tests on a HyperSPARC/125MHz based WS.

7.1 Block Cipher

We implemented prototype of 64-bit block cipher based on Knudsen-Nyberg construction [NK95, N95] using
Fys2-inversion as F-function and having 8 round. This cipher is provably secure against differential attack
[BS93] and linear attack [M94], and may be secure against higher order differential attack [K95] since algebraic
degree of Fys-inversion is 31 [N94, Proposition 4]*°. The prototype cipher achieves about 20Mb/s.

7.2 Elliptic Curve

We estimate the timings for calculating non-supersingular elliptic curve operation and compare with Win’s
algorithm [WBV+96, Table 2]. The result is described in Table9. Win et al. execute the tests on a Pen-
tium/133MHz based PC. We assume that elliptic curve addition requires 8 Fa»-addition, 2 Fa«-multiplication,
an Fyn-squaring, and an Fyn-inversion, and elliptic curve doubling requires 5 Fa« -addition, 2 Fa»-multiplication,
2 Fan-squaring, and an Fae-inversion. We also assume that our full-bit exponentiation uses simple double-
and-add/subtract algorithm which requires 256 doublings and on average 86 additions/subtractions.

According to Table9, we expect that our algorithm is superior to Win’s algorithm. However, because
we compare our algorithm with Win’s algorithm on a similar CPU clock speed but different architecture, we
cannot conclude the expectation.

9Computer exhaustive search proves that there does not exist an irreducible trinomial with degree 2¢ (3 <t < 11) over Fy.
10 owever, this cipher is very vulnerable against the interpolation -attack [JK97]. So this cipher cannot be used practically.
Against the interpolation attack, Matsui’s construction methodology of unbalanced network may be effective [M96].

140

Table 9: Implementation Speed Compared with Win’s Algorithm
Our algorithm (Fy2s6) Win’s algorithm (Fai76)

Multiplication 27.9us 64.5us
Inversion 40.9us 160us
Squaring 14.0us 5.9us
Addition 0.1us 1.2us

EC addition (estimation) 112us 306us
EC doubling (estimation) 125us 309us
EC exponentiation
with full bit exponent 41ms 72ms
(estimation)

Note that the speeds of our algorithm are estimated on HyperSPARC/125MHz, while
the speeds of Win’s algorithm are estimated on Pentium/133MHz.

8 Conclusion

This paper has proposed the construction of a quadratic extension with characteristic 2 and fast inversion
algorithms over this extension field. Our algorithms are regarded as a hybrid of Pincin’s and Paar’s algorithms
[P89, P96]. While Pincin’s and Paar’s papers only show a multiplication algorithm, we developed an inversion
algorithm. Our inversion algorithm requires only 1.5 times of the complexity of a multiplication. Our
algorithms are well suited for software implementation using table reference because recent processors have
large cache memory:

Acknowledgments

We thank Dr. Tsunogai of Sophia University for noticing that the effective construction technique of a
quadratic extension (Lemma 1) and thank anonymous referees for helpful comments improving our paper.

References

[ABMV93] G. B. Agnew, T. Beth, R. C. Mullin, and S. A. Vanstone. Arithmetic Operations in GF(2™).
Journal of Cryptology, Vol. 6, No. 1, pp. 3-13, 1993.

[BS93] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Standard. Spnnger—
Verlag, Berlin, Heidelberg, New York, 1993.

[CV9s5) F. Chabaud and S. Vaudenay. Links Between Differential and Linear Cryptanalysis. In A. D.
Santis, editor, Advances in Cryptology — EUROCRYPT’94, Volume 950 of Lecture Notes in
Computer Science, pp. 356-365. Springer-Verlag, Berlin, Heidelberg, New York, 1995.

[HMV93] G. Harper, A. Menezes, and S. Vanstone. Public-Key Cryptosystems with Very Small Key
Lengths. In R. A. Rueppel, editor, Advances in Cryptology — EUROCRYPT’92, Volume 658
of Lecture Notes in Computer Science, pp. 163-173. Springer-Verlag, Berlin, Heldelberg, New
York, 1993.

[1T87] T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in Finite Fields
Using Normal Bases. IEICE Transactions Fundamentals of Electronics, Communications and
Computer Sciences (Japan), Vol. J70-A, No. 11, pp. 1637-1645, 1987. (in Japanese).

[JK97] T. Jakobsen and L. R. Knudsen. The Interpolation Attack on Block Cipher. In E. Biham, editor,

Fast Software Encryption Workshop (FSEJ) Preproceedings, pp. 28-40, Technion, Hamfa Israel,
1997.

141

[K95]
[M94]
[M96]
[MO81]
[N94]
[N95]

[NK95]

[P89]
[P96]

[590]

[WBV+96]

L. R. Knudsen. Truncated and Higher Order Differentials. In B. Preneel, editor, Fast Soft-
ware Encryption — Second International Workshop, Volume 1008 of Lecture Notes in Computer
Science, pp. 196-211. Springer-Verlag, Berlin, Heidelberg, New York, 1995.

M. Matsui. Linear Cryptanalysis Method for DES Cipher. In T. Helleseth, editor, Advances in
Cryptology — EUROCRYPT’93, Volume 765 of Lecture Notes in Computer Science, pp. 386-397.
Springer-Verlag, Berlin, Heidelberg, New York, 1994. (Preliminary version written in Japanese
was presented at SCIS93-3C). .

M. Matsui. New Structure of Block Ciphers with Provable Security against Differential and
Linear Cryptanalysis. In D. Gollmann, editor, Fast Software Encryption, Third International
Workshop, Cambridge, UK, February 1996, Proceedings, Volume 1039 of Lecture Notes in Com-
puter Science, pp. 205-218. Springer-Verlag, Berlin, Heidelberg, New York, 1996.

J.L.Massey and J. K. Omura. Computational Method and Apparatus for Finite Field Arithmetic,
1981. US Patent Number 4,587,627.

K. Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth, editor, Advances
in Cryptology — EUROCRYPT’93, Volume 765 of Lecture Notes in Computer Science, pp. 55~
64. Springer-Verlag, Berlin, Heidelberg, New York, 1994.

K. Nyberg. Linear Approximation of Block Ciphers. In A. D. Santis, editor, Advances in

‘Cryptology — EUROCRYPT’94, Volume 950 of Lecture Notes in Computer Science, pp. 439—
444, Springer-Verlag, Berlin, Heidelberg, New York, 1995.

K. Nyberg and L. R. Knudsen. Provable Security Against a Differential Attack. Journal of
Cryptology, Vol. 8, No. 1, pp. 27-37, 1995. (A Preliminary version was presented at CRYPTO’92
rump session).

A. Pincin. A New Algorithm for Multiplication in Finite Fields. IEEE Transactions on comput-
ers, Vol. 38, No. 7, pp. 1045-1049, 1989. :

C. Paar. A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based
on Composite Fields. JEEE Transactions on computers, Vol. 45, No. 7, pp. 856-861, 1996.

V. Shoup. New Algorithms for Finding Irreducible Polynomials over Finite Fields. Mathematics
of Computation, Vol. 54, No. 189, pp. 435-447, 1990.

E. D. Win, A. Bosselaers, S. Vandenberghe, P. D. Gersem, and J. Vandewalle. A Fast Software
Implementation for Arithmetic Operations in GF(2"). In K. Kim and T. Matsumoto, editors,
Advances in Cryptology — ASIACRYPT’96, Volume 1163 of Lecture Notes in Computer Science,
pp. 65-76. Springer-Verlag, Berlin, Heidelberg, New York, 1996.

A Solving Recurrences

In Sect. 5, we have many recurrences. This section solves them.

A.1 Addition

‘We solve the following recurrence.

o

A3 1
A 2434

It’s trivial that

A =29

142

A.2 Multiplication

We solve the following recurrences.

AP = 0 MEY = 1
A—,x?}!lf = 2 A“l‘nul +4 M._mul ‘r_ni-l;l = 4 M"mul
First we solve M. It’s trivial that)
MPe = 4,
Secondly, we solve AP, Using the results of MPY, we have
=2444.4
& AFY —2.47 =g(AP -2.4%).
Therefore, we have)) i
AP - 2.4 =2 (AT -2-4%) = 2.2
& AP =2.4-2.2%
A.3 Squaring
We solve the following recurrences.
AT =0 Mg = 0 S¥ =1
AT, = 240 +4AMT 4+ 51 MY = 4AMY 4+ 5 S = 25
First we solve S;%". It’s trivial that]
S ¥ =2
Secondly, we solve M;"". Using the results of S, we have
M{E =4M}T + 2
sqr 1 i+l sqr 1 3
o M+ 52 =4(M;¥ + -2-2).
Therefore, we have
1 . R 1.0 1
M 4 -2 = 4 (MET 4 22°) = -4F
1:; 1
M:F = =4* - 22,
< * 2 2
Thirdly, we solve A;¥. Using the results of S;*" and M, we have
A =24 +2.4 -2
e S -y
2ttt T T i 2
Therefore, we have
AT —4F AT 40 i
7 - z- 143
& AT=4-(+ %)2‘.
A.4 Inversion
We solve the following recurrences.
AFT =0 o Mg =0
s =0 o= 1
o= s o=

143

First we solve Ji®. It’s trivial that)
I‘!nv — 1
Secondly, we solve Si*V. Using the results of I;™, we have
=257 +1
& S +1=2(SP+1).
Therefore, we have . o]
SEDV + 1 — 21(56“‘7 + 1) —_ 23
& Shv=9_1.
Thirdly, we solve M™. Using the results of I,i'"" and 5™, we have
T =AM 4+ 204+ 3

& ME+ %2‘“ +1=4(M™ + %2‘ +1).

Therefore, we have

fav , loi _ igaginv , 1.0 3
Mi™ 4 220 41 = £(MF +52°+ 1) = 54
. 3. 1.
& M™=-4--2"-1.
* 2 2

Lastly, we solve APV, Using the results of I}‘“’, Sinv, and M,-i‘“', we have
=247 46-4-2"-3
M —3-4t -3 APv-3.4-3 1
2i+1 - 24 2

Therefore, we have . . R
AP _3.4-3 APv-3-4"-3 i
2i - 20 2
@ AP =3.4-(6+2)2 +3.

=—6+1)

144

A Block-Ciphering Algorithm Based on
Addition-Multiplication Structure in GF(2")

Feng Zhu
Dept. of Computer Science and Technology, Tsinghua Univ.
Beijing, 100084, P.R.China
Email: zhufeng @theory.cs.tsinghua.edu.cn
Bao-An Guo
Dept. of Computer Science and Technology, Tsinghua Univ.
Beijing, 100084, P.R.China
Email: guoba@theory.cs.tsinghua.edu.cn
(Extended Abstract)

1. introduction

This paper describes a new block encryption algorithm. The block length is 64 bits for
plaintext and ciphertext; the user-selected key is 192 bits in length. This block-ciphering
algorithm is an iterated cipher in the sense that encrypting is performed by applying the same
transformation repeatedly for r rounds, then applying an output transformation; r=6 is
recommended but larger values of r can be used if desired for even greater security. Each round
uses two 64-bit subkeys , four 16-bit subkeys determined by a key schedule from the secret 192-
bit user-selected key. The output transformation uses other four 16-bit subkeys determined by
the key schedule. To achieve security with encipher processing , this block-ciphering algorithm
exploits one new cryptographic concept, namely Addition-Multiplication Structure. In encipher
processing, the plaintext and subkey are looked upon as two element in the Galois Field GF(2%),
and then they are mixed by the additive and multiplicative operation in GF(2%). It is proved that
this secret-key block-enciphering algorithm is a Markov cipher and its maximum probability of

1-round differential is 1/(264-1), so it can resist differential cryptanalysis with few rounds.

The cipher is described in Section 2. The design principles for the cipher are discussed in

145

Section 3. Section 4 considers the maximum probability of 1-round differential of this block-
ciphering algorithm and its property against differential cryptanalysis. .
2. Description of this block-ciphering algorithm

The computational graph of the encryption process is shown in Fig.1. The process consists
of 6 similar rounds followed by an output transformation. The complete first round and the

output transformation are depicted in this figure.

X, X, X, X,
® layer K,® A(%} Kz(\%%) %}-Ka(” %}w&“’

— K0
. Addition-
Multiplication i The first round
layer *

—— K,

Permutation '\

—
- [/ 1 1

5 more rounds

output
transformation

K, K, K, K,

2.1 The encryption process
In the encryption process shown in Fig.1, two different operation on pairs of 64-bit block
and one other operation on pairs of 16-bit subblock is used, namely,

— multiplication of polynomial modulo an irreducible polynomial in GF(2)[x] of which the

146

degree is 64 .The 64-bit block there is treated as a polynomial in GF(2)[x]. The resulted
operation is denoted as * .
x®4+x*4+x3+x+1 is recommended as the irreducible polynomial of degree 64 in GF(2)[x].

— bit-by-bit exclusive-OR of two 64-bit subblocks, denoted as +

Note that, this operation can be looked upon as an addition of polynomial modulo an irreducible
polynomial of degree 64 in GF(2)[x]. The 64-bit block there is treated as a polynomial in
GF(Q2)[x].

Meanwhile, it is well know that the field of polynomials over GF(2) modulo an irreducible

polynomial of degree 64 forms the Galois field of 284 elements GF(264).

— multiplication of integers modulo 2'%+1 where the 16-bit subblock is treated as the usual

radix-two representation of an integer except that the all-zero subblock is treated as 2'°; the

resulted operation is denoted as ® .

As an example of these operations, note that
0,0.......0,0,0,1,0)*(1,0........0,,1,1,0,1)=(0,0........0,0,0,0,1)
because x(x+x>+x%+1) mod x*+x*+x3+x+1) =1 in GF(Q)[x]

00, ...0,0)®(1.1......,1,1)=(0,0,,1,0)

because 2'°(2'°-1) mod(2'5+1)=2.

The 64-bit plaintext block X is partitioned into four 16-bit subblocks X1,X5,X3,Xs, i.c.,
- X=(X1,X2,X3,X4). The four plaintext subblock are then transformed into four 16-bit ciphertext
subblocks Y1,Y>,Y3,Ys, under the control of 12 key subblocks of 64 bits and 28 key subblocks
of 16 bits that are formed from the 192 bit secret key in a manner to be described below. The

ciphertext block is Y=(¥1,¥2,Y3,Y4). The four key subblocks of 16 bits used in the r-th round

147

are denoted as K3 K, Ka®,K4®. The two key subblocks of 64 bits used in the r-th round are
denoted as Ks© K¢®. Four key subblocks of 16 bits that are used in the output transformation are

denoted as K1(7),K (7),K3(7),K4(7).

In the i-th round, the input data, which is denoted as S, is partitioned into four 16-bit

‘subblocks S;,5,,83,S, first. Then they are passed through a ® layer which is controlled by

subkey Kl(i),Kg(i),K3(i),K4(i). The result of this transformation, which is denoted as T, is a 64-bit

block consists of four 16-bit subblocks. This transformation is denoted as ® 4, i.€.,
S ® 4(K:1® Ko Ks® KyP)=(81,82,83.8)® 4K K"K Ko

=(S1 ® K1”.5: ® K2",83 ® K3",84 @ Ki)=T
Then the 64-bits of the result of @ layer , T, passes through an Ad_dition—Multiplication layer

which is under the control of subkey Ks® K¢®. The result of this transformation, which is

denoted as U, is a 64-bit block. This transformation is denoted as AM, i.e.,

AM(T K5 K)=(T+KsO)*KO=U.
After that, the 64-bits of the result of the Addition-Multiplication layer, U, is partitioned into
four 16-bit subblocks U;,U,,Us,Us . They are then passed through a permutation layer. The
result of this transformation, which is denoted as V, is a 64-bit block, consists of four 16-bit
subblock. This transformation is denoted as Pe, i.e.,
Pe(U)=Pe((U1,U2,U3,U4))=(Us,U3,Uz, U1)=V

The 64-bit block, V, is the output data of the i-th round and also is the input data of the

(i+1)-th round.

148

In the output transformation the input data, which is denoted as V, is partitioned into four
16-bit subblocks V1,V2,V3,V,4 first. Then they are passed through a permutation layer. The
result of this transformation, which is denoted as W, is one 64-bit block, consists of four 16-bit
subblocks, i.e.,

Pe(V)=Pe((V1,V2,V3,V4))=(V4,V3,V2,V1)=(W1,W2,W3,W,4)=W

After that, W are passed through a ® layer which is controlled by subkey KV, K&+,

K3(”1),K4(”1), where r is the total number of rounds. The result of this transformation, which is

the ciphertext denoted as Y, is one 64-bit block, consists of four 16-bit subblocks. i.e.,

WV® 4(Kl(1'+1),K2(r+l)’Ks(r+l)’K4(r+l))=(Wi, W2, W3, Wa® 4(K1(Hl),Kg(H1),K3(r+1),K4(r+1))
=W ® Kl(Hl),Wz ® Kz(r+l),W3 ® K3(r+1)’“/4 ® K4(r+l))

=(Y1,Y2,Y3,Yg)=Y

Note that, the permutation in the output transformation counteracts the effect of the
permutation in the last round.
2.2 The key schedule

The 12 key subblocks of 64 bits and 28 key subblocks of 16 bits used in the encryption
process are generated from the 192-bit user-selected key.

First, initialize the array S of 1216 bit. The 192-bit user-selected key is directly used as the
first 192 bits of S. Then 192-bit user-selected key is cyclic shifted to the left by 31 bit positions,
after which the resulted 192-bit block is taken as the next 192 bits of S. The obtained 192-bit

block is again cyclic shifted to the left by 31 bit positions to produce the next 192 bits of S, and

149

this procedure is repeated until all S have been filled.

Second , add biases to S. S is partitioned into 38 32-bit subblocks -and then the j-th
subblock is added to the integer part of 23%#3bs(sin(j)), where j is in radians.

Thirdly, check S. Set variable j equal to 39. S is partitioned into 19 64-bit subblocks.

Check each subblock from left to right. If a subblock is (0....0), the left half of the subblock is

added to the integer part of 2** x abs(sin(j)) and the right half of the subblock is added to the
integer part of 232 x abs(sin(j+1)), where j is in radians and then add 2 to variable j. The purpose

of this step is to avoid weak subkey and to make it possible that decryption can be done
correctly.

Finally, produce the key subblock. Let K" be the segment of S from the 1st bit to the
64th bits. Let Ko be the segment of S from the 65th bit to the 128th bits. This procedure is
repeated until all 40 key subblocks have been generated.

2.3 The decryption process

The computational graph of the decryption process is essentially the same as that of the
encryption process, the only difference is the decryption key subblock Z® which are computed
from the encryption key subblock K;® as follows:

1% 25° 25° .20 y=((K:*? Y K YLKy LK) forr=1and 7

Z l(r) ’Zz(r) ,Z3(r) ’Z4(r))=((K4(8-r))—I’KS(S-I))-1,K2(8-r))'I,K l(8-r))1) for r=2,3,4,5,6'

(Z5,Z6™)=(KsT K", (KT) for r=1,2,....6
- where K denote the multiplicative inverse (modulo 216+1) of K, ie. , K® K'=1,

and K'* denote the polynomial multiplicative inverse modulo x4 ex+1 of K, e

150

K*K!*=1.

Thus the same device or subprogram can be used for both encryption and decryption. The
extra cost is the computation for generating the key subblocks from 192-bit user-selected kéy.

To display why the decryption works, let’s note first that the ® layer controlled by
subkey (Zl(l),ZQ(’),Z3(l),Z4(D) in the first round for decryption undoes the ® layer controlled by

subkey (K", K,"*P, K™D K, D) in the output transformation for encryption, where r is the
total number of rounds.

Then the Addition-Multiplication layer controlled by (Zs",Z¢™) in the first round for
decryption undoes the Addition-Multiplication layer controlled by (Ks®,Ke®) in the last round
for encryption , where r is the total number of rounds. i.e.
if, in encryption,

U=AM(T Ks® Ke)=(T+KsO)*K O,
where T, a 64-bit block , is input data for Addition-Multiplication layer in encryption.
U is output data for Addition-Multiplication layer in encryption.

then, in decryption,
T'=AM(U,Z5",Zs))=AM(U, Ks *Kq?, (K" *)
=(U+ KsKg)* (K" *=((T+K5")*Ke"? + KsPKe)* (Ks?)' *
=(T*K¢")* (Ks)" *=T
(note that, all these operation is in the GF(2){x] modulo an irreducible polynomial of degree

64 in GF(2)[x].)

where T’ is the output data for Addition-Multiplication layer in decryption.

151

So, It can be seen that T°, which is the output data for Addition-Multiplication layer in
decryption, is equal to T, which is the output data for Addition-Multiplication layer in
encryption.

Next, the permutation layer in the first round and the ® layer controlled by subkey
(ZI(Z),ZQ(Z),Z3(Z),Z4(2)) in the 2nd round for decryption undoes the ® layer controlled by subkey

(Kl('),Kz(’), K5 K,®) in the last round and the permutation in the round before the last round for
encryption, where r is the total number of rounds.
In the same way, other decryption rounds undoes the transformation performed in

corresponding encryption rounds. The ® layer controlled by subkey (Zl('),ZQ(’),Z3(r),Z4(r)) in the
output transformation for decryption undoes the ® layer controlled by subkey K P K,

Ks® K4 in the first round for encryption.

So that the original plaintext is recovered .
3. Design principles for this cipher

This block cipher is designed in accordance with Shannon’s principles of confusion and
diffusion for obtaining security in secret-key cipher.

The confusion required for a secure cipher is achieved in this block cipher by fnixing three

incompatible operation, i.e., ® 4,+,*.

The three operation are incompatible in the sense that:

1. ® sand + do not satisfies a distribution law. i.e.,
there exist a, b, ¢, where a,b,c are 64-bit block , such that a ® 4(b+c) is not equal t0 (a2 ®

4b)+(a ® 4c), and there exist a, b, ¢, where a,b,c are 64-bit block , such that a+(b ® 4¢) is not

152

equal to (a+b)® 4(at+c),

2. ® sand * do not satisfies a distribution law. i.e.,
therer exist a, b, ¢, where a,b,c are 64-bit block , such that a ® 4(b*c) is not equal to
(a ®4b)*(@® 4¢), and them exist a, b, ¢, where a,b,c are 64-bit block , such that a*(b ® 4c)
is not equal to (a*b)® 4(a*c),

3 ® sand + do not satisfies a generalized associative law , i.e.,
there exist a, b, ¢, where a,b,c are 64-bit block , such that a ® 4(b+c) is not equal to
(a® 4b)+c

4 ® 4 apd * do not satisfies a generalized associative law ,i.e.,
there exist a, b, ¢, where a,b,c are 64-bit block , such that a ® 4(b¥c) is not equal to
(a ® ab)*c

5. ® 4is an operation in the group Cp, X Cp, X Cp X Cp, wherem=2®. + isan operation
in the group (C,)", where n=64. ;* is an operation in the group C,, where m=2%-1.

_ (note, where C; is a cyclic group of degree j). No pair of these 3 groups is isomorphism.
Thus, one can not change the order of operations arbitrarily to simplify analysis or replace
one operation with the other by applying bijective mappings on the inputs and outputs.
A check by direct computation has shown that the round function is “complete” ,i.e., that
each output bit of the round depends on every bit of the input bit of that round. This diffusion is

provided in this block cipher by the transformation called the addition-multiplication structure.

153

The addition-multiplication structure transform one 64-bit block into another 64-bit block
controlled by two 64-bit key blocks. This structure has the properties of “complete diffusion
effect” in the sense that each output bit depends on every input bit .

In the other hand, because the “*” operation and the “® 4~ operation are highly nonlinear

transformation with enough number of input bits and output bits, and the “*” operation make
each output bit depending on every input bit, so the transformation combined by the “*”

operation and the “® 4~ operation is “far from” linear transformation. This property increases

the resistance to linear cryptanalysis[8].

The security of this cipher against differential cryptanalysis will be discussed in detail in
next section.

As to the other kinds of attack, several tests have been conducted. Up to now, we have not
found any weakness of this cipher.
4. The property against differential cryptanalysis

The differential cryptanalysis proposed by Biham and Shamir[4][5] showed that a lot of
iterated block ciphers are theorcticall& cryptanalysable[6]{7] . In their attack, they introduced a
new notion which they called characteristic . Characteristic describe the behavior of input and
output differences for some number of consecutive rounds. The probability of a one-round
characteristic is the conditional probability that given a certain difference in the inputs to the
round we get a certain difference in the outputs of the round. Lai and Massey[3] introduced a
similar notion, which they called differential. The probability of an s-round differential is the
condition probability that given an input difference at the first round, the output difference at the

s-th round will be some fixed value. The probability of an s-round differential with input

154

difference A and output difference B is the sum of the probabilities of all s-round characteristics

with input difference A and output difference B. For s < 2 the probabilities for a differential and

for the corresponding characteristic are equal. Both the characteristic and the differential can
equally be used for successful attack. The key to success on carrying out a differential attack in
iterated block cipher is to use either a high characteristic probability or high differential
probability. So to resist differential cryptanalysis, we should make no nontrivial s-round
differential is useful. This goal can be achieved by reducing the maximum probability of
nontrivial éne-round characteristic of an iterated cipher.

Now, Let’s turn to the cipher we proposed.

First, we will show this cipher is a Markov cipher, a fact that great simplifies its analysis

for resistance to differential cryptanalysis.

In[1], Lai proved that, if the round function of an iterated ciphe_r is in the form f(X,Z)=g(X
© Za.Zg), where © is a group operation, and g(- ,Zg) is invertible for any Zg, then the iterated
cipher is a Markov cipher where the definition of difference between a pair of plaintext is A
X=X O X’y

The round function of this iterated cipher is in the form f(X,Z)=g(X é(Kl‘”,Kz“),
K" Ki),Ks" Ks?)), where © is ® 4, and g(- ,(Ks"Ks?)) is Pe(AM(- Ks“Ks) =
Pe((- +K5(‘))*K5(r)), and is invertible for any Zjg, so this iterated cipher is a Markov cipher
where the definition of difference between a pair of plaintextis A X=X ® 4(X’)'1.

Next we will prove that the maximum probability of nontrivial one-round characteristic of

155

this iterated cipher reaches its possible minimum, i.e., —2—6—3———-1- .

Theorem 1. Assume the round keys (i.e., K1,K>,K3,K4,K5,K¢) of this cipher are independent and
Ks uniformly random in GF(2") , K¢ uniformly random in GF2")\{0}, then the maximum

probability of nontrivial one-round characteristic of this iterated cipher is

max,., max, P(AY =blAX =a) = ﬁ , where the definition of difference between a pair of

plaintextis & X=X ® 4(X*) 1 and 0 is the unit element of the corresponding group.

Proof. In this cipher,

Y=Pe((X ® 4(K1,K2,K3,K4))+Ks)*Kg) and Y’=Pe((X’® 4(K1,K2,K3,K4))+Ks)*Ks)

For any ,except the unit ,elements a and b in their corresponding group

P(AY =b,AX = a)

P(AY =bIAX = a) = X —a)
=aqa

(D

But,

P(AY =b,AX =a)

=erGF(26‘)P(AY=b’X =x,X'=a"' ®,x)
= erGF(z“)P(AyszX =x,X'=x)P(X =x,X'=x) (wherex=a"'®,x)

= erGF(Z“) P(((Cx ®4 (Kl’KZ K3, K,))+ K;) *Ks)
®4 (((;®4 (Kl,Kz,K3,K4))+K5) *KG)—l =b)P(X :x,X':;)

156

= erar(z“) P(X =x,X'=})Zy€GF(2“)P(((x Oy (K1, Ka o Ky, K+ Ks)* K = 3)

(((x®, (K., Ky Ky, K) +K)*Kg) =)
(where y =Pe(v™)®, y)

— — '— —
- erap(z“) P(X =x,X'= x)ZyeGF(z“‘) Zk 1eGF(2'%) Zkzec;r(z“) ZkSeGF(Z") Zk4ecp(z")‘

P((((x®, (k1,k2,k3,k4)) + K;)* Kg) = y,(x®, (k1,k2,k3,k4)) + K;) *K) = y)
P (K, =k1)P (K, =k2)P (K, =k3)P (K, = k4)

= ercp(z“) P(X =x,X'= ;)ZyeGF(Z“) Zk 1e¢p(2‘°) Zkzecr(z“) Zkaeor(z") Zk4eGF(2“)'
P(K;=k5,K; =k6) P(K, =kl)P (K, =k2)P (K, =k3)P (K, =k4)
(Where k5= (y +y) " *(xy +xy), k6= (y +) *(x +X) ™"
x=x®, (k1,k2,k3,k4),x = x®, (k1,k2,k3,k4),)

= ercp(z“) P (X =x,X'= x)ZyeGF(z“)Xklecp(z“)ZszcF(z") steGF(z")ZkaeGF(z“)‘
1

2%@2% -1)

(because the round keys (i.e., K;,K,,K,,K,,K,K) of this cipher are

independent and K uniformly random in GF(2**) and K uniformly random in GFQ*)\{0})

P (K, =k1)P (K, =k2)P (K, =k3)P (K, = k4)

1

_ 1
% -1)

Y ora PX =x,X'=x) = D P(Ax=a)

_P(AY=b,AX =q) _

So, P(AY =blAX =a) 73
P(AX =a) 2" -1

= constant

Thus we get: max_,, max, P(AY =blAX =q) =

2% —1

By applying the theorem proved in [2], we can also prove that the maximum probability of

one round differential of this block cipher is 5 641 T regardless of the definition of difference

between a pair of plaintext blocks (or a pair of ciphertext blocks).

157

For the evidence shown above , we can said that this block cipher is secure against
differential cryptanalysis.
5. Conclusion
A new secret-key block—cncipheﬁng algorithm with an Addition-Multiplication Structure
in Galois Field GF(264) in edch round has been proposed. New cryptographic feature in this
block-enciphering algorithm is the use of an Addition-Multiplication Structure in Gaiois Field
GF(264) in each round, to achieve the desired “diffusion” of small changes in the plaintext or the
key over the resulted ciphertext, and more importantly, to reduce the probabiiity of 1-round
differential. It has been proved that this secret-key block-enciphering algorithm is a Markov
cipher and its maximum probability of 1-round differential is 1/(264f1),‘ so it can resist
differential cryptanalysis with few rounds.
In all of the statistical tests conducted up to now, we have not found any weakness of this
- cipher. Yet, of course, the security of this cipher needs further intensive investigation.
Acknowledgment
We would like to thank the anonymous referees for comments that improved the paper.
References
[1]X.Lai, On the Designed and security of block cipher, Ph.D. Thesis, Swiss Federal Institute of
Technology, Zurich, 1992
[2]F.Zhu and B.Guo, A multiplication-addition structure against differential attack, To appear.
'[3] X.Lai, J.massey, and S.Murphy = Markov cipher and differential cryptanalysis. Advances
in Cryptology - CRYPTO’91. Lecture Notes in Computer Science , Vol. 547 Springer-Verlag,

Berlin,1992,pp.17-38.

158

[4] E.Biham and Shamir. Differential cryptanalysis of DES-like systems. Journal of Cryptology,
Vol4,No.1,1991,pp.3-72.

[S]JE.Biham and A.Shamir . Differential cryptanalysis of the full 16-round DES, Advances in
Cryptology: Proceeding of CRYPTO’92, Springer-Verlag, Berlin, 1993, pp. 487-496.

[6]E.Biham and A.Shamir . Differential cryptanalysis of FEAL and N-Hash, Advances in
Cryprology: Proceeding of EUROCRYPT 91, Springer-Verlag, Berlin, 1991, pp. 1-16

[7]JE.Biham and A.Shamir . Differential cryptanalysis of Snefru, Khafre, REDOC-II, LOKI, and
Lucifer. Advances in Cryptology: Proceeding of CRYPTO'91, 1992, pp. 156-171

[8]M.Matsui. Linear cryptanalysis method for DES-cipher. Advances in Cryptology: Proceeding

of EUROCRYPT’93, Springer-Verlag, Berlin, 1994, pp. 386-397

159

DES-80

Carlisle M. Adams

Entrust Technologies
750 Heron Road
Ottawa, Canada, K1V 1A7

1. Abstract

In the Fall of 1996, the Canadian Government issued a request for a study on the feasibility of strengthening the
Data Encryption Standard (DES) by increasing the key length to 80 bits. What made this request both interesting
and challenging was the overall constraint placed on the project: there was to be no change whatsoever made to the
actual encryption / decryption algorithm; rather, changes were to be confined solely to the key scheduling
algorithm. Any method may be used to input and process the (maximum) 80-bit primary key, but the result of the
process must be sixteen 48-bit round keys suitable for keying the DES rounds in the standard manner.

This paper summarizes the results of the above study, including a new key scheduling algorithm that appears to
satisfy all requirements of the DES-80 project. The full report (dated May 2, 1997) is the property of the Canadian
Government.

2. Introduction

The Data Encryption Standard (DES) is perhaps the most widely known and widely used cryptographic
algorithm in the world today. Since its introduction to the public in the mid-1970s, it has undergone intensive
scrutiny by academics, government agencies, industry, and a host of would-be cryptanalysts (both the serious and
the hobbyist). Two decades of such focused attention has convinced many that the algorithm itself is basically
sound and that the principles used in its design have resulted in a cipher with intrinsic cryptographic strength.

Unfortunately, however, the DES algorithm as originally proposed has a keysize that is too small for some
environments. Furthermore, with the rapid advances in computing performance, even on relatively low-priced
desktop machines, it is clear that this keysize will become too small for many (or most) environments in the fairly
near future. It appears that only two alternatives are possible if security is to be maintained: find a suitable DES
replacement algorithm that has cryptographic strength commensurate with the predicted need for the next several
years; or modify DES itself in order to increase its strength.

Although the first alternative is being pursued vigorously by many researchers (and has resulted in a number of
candidate ciphers), it is recognized that the probability is relatively low that any other cipher will undergo the length
and breadth of analysis that DES has so far undergone. Consequently, it may take a considerable length of time
before any significant degree of confidence in the security of any given cipher is gained.

The second alternative is the ultimate goal of the DES-80 project. The intention is to leave the algorithm
entirely as originally proposed, thereby drawing on the confidence built up over two decades of intense DES-related
study. It is hoped that by altering the key schedule alone it may be possible to increase the key length of DES
without weakening the cipher in any respect.

The remainder of this paper is organized as follows. Section 3 discusses key schedule design criteria for DES-
like ciphers. Section 4 provides a number of candidate proposals for the DES-80 key schedule, and Section 5
evaluates these proposals with respect to the design criteria and the constraints of the DES-80 project. Section 6
describes a new key scheduling algorithm designed specifically for this project and compares it with the other
candidates. The paper closes in Section 7 with some concluding remarks.

3. Key Schedule Design Criteria

Over the years a number of researchers have discussed and proposed design criteria for key scheduling
algorithms in DES-like ciphers and/or have attempted to derive from the specification of DES the criteria that went

* The work described in this paper was funded by the Communications Security Establishment of the Canadian
Government.

160

