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1. Abstract

In the Fall of 1996, the Canadian Government issued a request for a study on the feasibility of strengthening the
Data Encryption Standard (DES) by increasing the key length to 80 bits. What made this request both interesting
and challenging was the overall constraint placed on the project: there was to be no change whatsoever made to the
actual encryption / decryption algorithm; rather, changes were to be confined solely to the key scheduling
algorithm. Any method may be used to input and process the (maximum) 80-bit primary key, but the result of the
process must be sixteen 48-bit round keys suitable for keying the DES rounds in the standard manner.

This paper summarizes the results of the above study, including a new key scheduling algorithm that appears to
satisfy all requirements of the DES-80 project. The full report (dated May 2, 1997) is the property of the Canadian
Government.

2. Introduction

The Data Encryption Standard (DES) is perhaps the most widely known and widely used cryptographic
algorithm in the world today. Since its introduction to the public in the mid-1970s, it has undergone intensive
scrutiny by academics, government agencies, industry, and a host of would-be cryptanalysts (both the serious and
the hobbyist). Two decades of such focused attention has convinced many that the algorithm itself is basically
sound and that the principles used in its design have resulted in a cipher with intrinsic cryptographic strength.

Unfortunately, however, the DES algorithm as originally proposed has a keysize that is too small for some
environments. Furthermore, with the rapid advances in computing performance, even on relatively low-priced
desktop machines, it is clear that this keysize will become too small for many (or most) environments in the fairly
near future. It appears that only two alternatives are possible if security is to be maintained: find a suitable DES
replacement algorithm that has cryptographic strength commensurate with the predicted need for the next several
years; or modify DES itself in order to increase its strength.

Although the first alternative is being pursued vigorously by many researchers (and has resulted in a number of
candidate ciphers), it is recognized that the probability is relatively low that any other cipher will undergo the length
and breadth of analysis that DES has so far undergone. Consequently, it may take a considerable length of time
before any significant degree of confidence in the security of any given cipher is gained.

The second alternative is the ultimate goal of the DES-80 project. The intention is to leave the algorithm
entirely as originally proposed, thereby drawing on the confidence built up over two decades of intense DES-related
study. It is hoped that by altering the key schedule alone it may be possible to increase the key length of DES
without weakening the cipher in any respect.

The remainder of this paper is organized as follows. Section 3 discusses key schedule design criteria for DES-
like ciphers. Section 4 provides a number of candidate proposals for the DES-80 key schedule, and Section 5
evaluates these proposals with respect to the design criteria and the constraints of the DES-80 project. Section 6
describes a new key scheduling algorithm designed specifically for this project and compares it with the other
candidates. The paper closes in Section 7 with some concluding remarks.

3. Key Schedule Design Criteria

Over the years a number of researchers have discussed and proposed design criteria for key scheduling
algorithms in DES-like ciphers and/or have attempted to derive from the specification of DES the criteria that went

* The work described in this paper was funded by the Communications Security Establishment of the Canadian
Government.
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into its design. This section summarizes that work and lists the criteria that appear to be important in key schedule
design.

3.1 Bit Effectiveness

This criterion strives to avoid ineffective key bits (for any arbitrarily-chosen primary key) by ensuring that each
bit is used as an input to each s-box somewhere in the cipher (e.g., since DES uses 8 s-boxes, thén each key bit must
be input to each of the 8 s-boxes by the time the final round has been computed) [6, 14]. This general objective is
refined slightly in [1], where it is recommended that all key bits be used by the time that half the rounds have been
computed, and reused, possibly in a different order, in the lower half of the network (thus ensuring good key
avalanche for both encryption and decryption). The objective is slightly further refined in [7], where it is suggested
that each key bit should be presented to each s-box “as quickly as possible”.

3.2 Bit Diffusion

If key bits are reused through the rounds (if the key is anything other than 768 truly independent bits in DES,
for example), then a given bit should have a different “role” with each use. This concept has been expressed as
follows: no key bit is used as input to the same s-box on successive rounds [6, 14]. Note that this criterion can
therefore satisfy the “bit effectiveness” criterion (Section 3.1) for any cipher that has more rounds than s-boxes
(such as DES).

In some ways, this criterion may be seen as an extreme expression of the “rotating keys” criterion (Section
3.10.

3.3 Key/Ciphertext Completeness

Kam and Davida [9] defined the property of plaintext/ciphertext “completeness” for substitution-permutation
network cryptosystems having an #-bit blocksize and an m-bit keysize as follows: for every possible key value,
every output bit ¢; of the SP network depends on all input bits p,, p,, ..., py, and not just a proper subset of the input
bits. It is not difficult to construct a similar definition for key/ciphertext completeness (which should also be a
property of any good cipher, as noted in [1]): for every possible plaintext value, every output bit ¢; of the SP
network depends on all key bits &y, k, ..., ky, and not just a proper subset of the key bits.

A number of researchers have reiterated this general requirement by stating that dependency of every ciphertext
bit on all key bits should increase rapidly through the rounds; with respect to DES, analysis has shown that every
ciphertext bit is dependent on all key bits after five rounds [7, 14, 15]. :

3.4 Key/Ciphertext SAC, BIC

Webster and Tavares [19, 20] defined the property of Strict Avalanche Criterion (SAC) as follows: output bit j
should change with probability % when any single input bit / is inverted, for all i, j (where the probability is
computed over the set of all pairs of input vectors that differ only in bit /). The property of (output) Bit
Independence Criterion (BIC) was defined similarly: output bits j and k should change independently when any
single input bit i is inverted, for all j, j, k (where the independence is computed over the set of all pairs of input
vectors that differ only in bit 7).

“Highér orders” of SAC and BIC involve multiple-bit changes to the input and, for the case of BIC, also
involve combinations of multiple output bits (see, for example, the definitions and notation given in [16]).

Applying these concepts to the topic of key scheduling leads to the criterion that the key schedule should satisfy
(at least to a close approximation) SAC, BIC, higher-order SAC, and higher-order BIC. As well (like the
key/ciphertext completeness criterion of Section 3.3), this dependency should increase rapidly through the rounds.

3.5 Pseudo-independence of “Intra” Round Key Bits

Knudsen [11] (see also [5]) has proposed the following property of a “strong” key schedule: given any s bits of
the set of round keys, derived from an unknown primary key (where s is less than the total amount of round key
material), it is hard to find any of the remaining round key bits from the s known bits. The term hard may be
replaced by a more precise definition depending on the application, but it is noted as a practical limit that it cannot
be harder than performing the key schedule for all possible primary keys.

3.6 Pseudo-Independence of “Inter” Round Key Bits
Knudsen [11] (see also [5]) has proposed the following property of a “strong” key schedule: given some

relation between two primary keys, it is difficult to predict the relations between any of the round keys derived from
these two primary keys. The term difficult may be replaced by a more precise definition depending on the
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application, but it is noted as a practical limit that it cannot be more difficult than performing the key schedule for
the two primary keys. Furthermore, if the primary keys are unknown (i.e., their relation is all that is known), then
difficult cannot be more difficult than performing the key schedule for all possible pairs of primary keys.

3.7 Absence of Weak and Semi-Weak Keys

Weak and semi-weak keys for DES have been defined and examined in a number of places (see, for example,
[8, 15, 17, 18]). Weak keys have the property that double encryption returns the original plaintext (i.e., E{Ex(p)) =
p, where k is a weak key and p is any plaintext). Semi-weak keys also have the property that double encryption
returns the original plaintext, but in this case each encryption uses a different key (i.e., ‘Ex,(Ex(p)) = p (where k1
and A2 are a semi-weak pair and p is any plaintext).. DES has 4 weak keys and 12 semi-weak keys (6 semi-weak
pairs).

1t is clear that such a-small number of weak and semi-weak keys implies that these are extremely unlikely to be
chosen by chance in any given environment, so many implementations do not check for these when randomly
generating DES keys. However, it should be noted that while weak keys create few problems for enciphering (since
they are unlikely to occur), they can be a problem for hash functions based on DES because the key input may be
chosen by the attacker in attempts to find collisions. Thus, it is concluded that an important design criterion of a
key schedule is that it produces no weak or semi-weak keys [11].

3.8 No Easily-Found Fixed Points

A fixed point of a key k is a plaintext vector x such that Ef(x) = x, and an anti-fixed point of a key kis a
plaintext vector x such that Ex(x) is the complement of x (see [17, 18], for example). It is known for DES that each
of the weak keys has 2 easily-found fixed points and each of four of the semi-weak keys has 2*? easily-found anti-
fixed points (where “easily-found” means that a level of effort of roughly 2°? operations, rather than 2* operations,
is required). :

Since easily-found fixed points and anti-fixed points are a consequence of the details of the key scheduling
algorithm, a reasonable design goal for a new key schedule is that it should have no easily-found fixed or anti-fixed
points for any key. From all evidence available thus far in the open literature, fixed and anti-fixed points have only
been easily found in DES-like ciphers for weak and semi-weak keys. It is therefore conjectured that a key schedule
will satisfy this criterion if it can provably avoid producing weak and semi-weak keys (the criterion of Section 3.7)

[2].
3.9 Absence of Quasi-Weak Keys

Knudsen {13] has shown that for a large number of pairs of keys in DES (so-called “quasi-weak” keys) there is
a simple relation between the encryption functions induced by these keys. This relation is a result of the fact that
these quasi-weak key pairs have a significant number of round keys in common (e.g., 12 or 13). -Although these
keys appear not to be a problem for encryption / decryption in typical applications, it is'noted that some concern
may -exist for hash functions based on DES (in which the keys are fixed or can be chosen as part of the hash
message).

‘A desirable criterion for the DES-80 key schedule, therefore, is that it should avoid quasi-weak keys.

3.10 Absence of Related Keys

Biham [3] has shown the importance of avoiding key schedules that produce obvious relationships between
round keys by describing chosen-plaintext attacks that are of lower complexity than exhaustive search, and low-
complexity chosen-key attacks, both of which are independent of the number of rounds of the cipher and of the
details of the round function.

He notes that DES is not vulnerable to the attacks described because of the irregularity of the shift pattern in its
key schedule. An important criterion for the DES-80 key schedule, therefore, is that it should avoid related keys
(although it need not necessarily do this through the use of an irregular shift pattern).

3.11 Need for Rotating Keys

Grossman and Tuckerman [8] have shown that a Feistel-like cipher that does not use a “rotating key” can be
broken. That is, if the same key bits are used in the same way for every round, then the cipher will succumb to a
chosen plaintext attack, regardless of the number of rounds. This leads to the criterion that the key schedule must
have rotating keys (i.e., round keys that are not identical over successive rounds).

Note that the criteria of “bit effectiveness™ and “bit diffusion” (Sections 3.1 and 3.2, resp.) strengthen and make
more explicit the intention of this criterion.
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3.12 Absence of Complementation Property

It is well known that DES has the “complementation” property: E k (p) =E 4 (p?) (see [15], for example).

Although this does little harm in terms of security (reducing the work factor of exhaustive key search from 2% to 2%
encryptions), it seems highly unlikely that possession of this property was an explicit design goal for DES; it is
much more probable that this was simply an unfortunate side effect of the way the key scheduling is done and the
way the round keys are used within the cipher.

Given, however, the opportunity to completely re-design the key schedule for DES, it seems that there is little
reason to maintain this long-standing side effect. An explicit design goal of the DES-80 project, therefore, is that
the revised cipher should not possess the complementation property.

3.13 Decryption Considerations

The current DES key schedule uses rotations as one aspect of its computation of successive round keys. The
total number of bits rotated through the schedule is 56, which implies that K(0) = K(16); this enables the decryption
operation to use right shifts in reverse order (as opposed to left shifts in “forward order” — the order specified in
DES) [6]. The current key schedule thus allows the first round key for decryption to be computed as quickly as the
first round key for encryption, which may lead to a slightly decreased set-up time before decryption can begin in
some specialized implementations. :

In typical implementations, however, the full set of round keys is computed before encryption or decryption is
begun, so a more practical criterion is that the computation of the set of round keys for decryption should not be
significantly more time consuming than the computation of the set of round keys for encryption. (But note that this
more relaxed criterion is readily fulfilled by any key schedule, since the round keys can always be computed in
“forward” order and then used in reverse order for decryption; that is, they need never actually be computed in
reverse order.)

3.14 Round Key Set-Up Time

The time required to establish the complete set of round keys should not be significantly different from that
required with the current DES key scheduling algorithm (for encryption as well as for decryption). This is
particularly important for environments wherein very short messages need to be encrypted/decrypted or keys need
to be changed relatively frequently. : .

3.16 Implementation Simplicity

Although not strictly important in terms of security, for practical considerations it is desirable that the key
schedule be relatively simple to implement. This can lead to implementations that are completed more quickly and
that are more likely to be correct the first time, which in turn leads to cost savings and other associated benefits.

3.16 Summary

With respect to the criteria listed above, it can be said that the current DES key schedule fails Sections 3.5, 3.6,
3.7, 3.8, 3.9, and 3.12 (to varying degrees), and essentially satisfies the remaining Sections. An explicit design
intent for the DES-80 key schedule, of course, is to satisfy as many of the above criteria as possible.

From the descriptions given above it is not difficult to see that Sections 3.1 and 3.11 are subsumed by 3.2, 3.3
is subsumed by 3.4, 3.8 appears to be satisfied by 3.7, and 3.13 appears to be of little practical value to many
implementations. Thus, the following criteria are judged to be of most relevance and importance to the DES-80
project:

Section 3.2: diffusion of key bits;

Section 3.4: key/cipheﬁext SAC, BIC (and higher orders);
Section 3.5: pseudo-independence of intra-round keys;
Section 3.6: pseudo-independence of inter-round keys;
Section 3.7: absence of weak and semi-weak keys;
Section 3.9: absence of quasi-weak keys;

Section 3.10: absence of related keys;

Section 3.12:absence of complementation property;
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Section 3.14:short round key set-up time; and
Section 3.15:implementation simplicity.

These, then, are the criteria that are used for evaluation of the various key schedule proposals in Section. 5.

4. Candidates from the Open Literature

In this section some of the most significant/important key scheduling proposals are described in some detail
(the full report contains additional proposals that are not included in this summary due to lack of space). The
proposals are examined in the following section with respect to both the design criteria distilled from the literature
and the constraints imposed by the DES-80 project itself.

4.1 Knudsen (1994)

Knudsen [11] examines two main areas of Feistel cipher design: “strong” key scheduling; and “nonlinear and
differentially uniform” round function construction. In the discussion on key scheduling, two proposals are given
(the first keeps the key length at 56 bits but increases resistance to linear, differential, and exhaustive search
cryptanalysis; the second doubles the key length (to 112 bits, thus rendering exhaustive search computationally
infeasible) and has the same increase in resistance to linear and differential attacks as the first proposal). Knudsen
recommends the second proposal in recognition of the fact that DES requires a larger key for many environments.

Proposal
The proposal is as follows:

RK;= 48MSB(DESK(DESK, (DESK\(IV ® j)))).
Thus, two-key triple-DES is used to compute the round keys, leading to a 112-bit version of DES.

4.2 Biham, Biryukov (1995)

The paper by Biham and Biryukov [4] explores and analyzes four main approaches for extending the key length
of DES: key-dependent s-box transformations; key-dependent s-box reorderings; key-dependent s-box “choices”;
and key-dependent s-box “contents”. The first creates new s-boxes through the transformation of existing s-boxes
(by XORing key material before and after the s-box look-up). The second uses key bits to choose an order of the s-
boxes in the round function. The third uses key bits to select new s-boxes for the round function. Finally, the fourth
uses key bits to generate s-boxes with random (or pseudorandom) content.

Proposal

Biham and Biryukov propose the followmg modlﬁcatlons to DES. ‘Their key is of the form (K, Kp, K¢, Kj), where
each component is specified as follows.

K consists of 16 bits, expanded (as specified in [4]) to 48 bits; these are XORed to the input of the s-boxes
in all the rounds.

Kp consists of 32 bits; these are XORed to the output of the s-boxes in all the rounds.

K, consists of 8 bits if DES s-boxes are used and consists of 15 bits if s’DES (see ‘[1 1]) s-boxes are used;
these choose an order in which the s-boxes are loaded (where each combination of bits corresponds to one
* of the strong orders of the s-boxes).

K consists of 56 bits; these are loaded into the original DES key scheduling algorithm.

Thus, the key consists of 56+16+32+8 = 112 bits in the case of DES s-boxes and 119 bits in the case of s’DES s-
boxes (note that the authors recommend the s’DES s-boxes — with a reversed order of S1 and S2 — since these
appear to be more resistant to both linear and differential cryptanalysis than the original DES s-boxes). The keys
K4, Kp, and K, are used to construct a set of s-boxes from the starting set; this new set is then loaded into the DES
algorithm along with Kj7. Key scheduling is done with K as spemﬁed in the original DES and encryptxon or
decryption proceeds as in DES (but with the new s-boxes).

4.3 Kilian, Rogaway (1996)

Kilian and Rogaway [10] show that the DESX construction is effective in protecting DES against exhaustive
key search. Specifically, let k be the key length for a block cipher and let » be its block length. An ideal block
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cipher with these parameters is modeled as a random map F: {0,13* x {0,13" — {0,1}" subject to the constraint that
for every key k& e{O,l}” > Fr() isa permutation on {0,1}”. This ideal cipher F is then extended to FX, where
FX:{0,1}**%" x {0,1}" — {0,1}", by setting

FXp(x)= FXkﬂkxﬂkz xX)=k, ®F, (k;®x).

It is shown that using only exhaustive search (i.e., treating FX as a “black box” and having access only to
plaintext/ciphertext pairs without knowing anything whatsoever about the internal structure of the cipher), the
effective key length is increased from « to Kx+n-1-lgm bits, where m bounds the number of <x,FXk(x)> pairs that the
adversary can obtain.

Proposal

Although it is recognized that DES is not an ideal cipher (i.e., a family of random permutations), it is also
recognized that it does appear to be an ideal cipher with respect to pure black box statistical analysis (that is,
analysis that does not exploit the internal structure of the cipher) except for its complementation property. Thus, the
effective key length of DES is 55 bits and so the effective key length of DESX is 55+64-1-lgm bits. If an adversary
can obtain up to m=2" blocks of enciphered data (a reasonable upper bound, since greater amounts will quickly lead
to other attacks arising from the birthday paradox), then DESX has an effective key length of 88 bits.

Kilian and Rogaway therefore recommend the use of DESX wherever DES is currently used since it is efficient,
DES-compatible, patent unencumbered, and at least 88 bits strong against exhaustive key search. Furthermore, they
note that DESX retains its strength even if k=k, (i.e., if DESX is defined as k®DES(k,®x)), so that the primary
key can be 56+64=120 bits rather than 184 bits. Finally, although it is freely admitted that DESX was never
intended to defend against differential or linear cryptanalysis (or indeed against any attack that exploits the internal
structure of DES), the authors note that their proofs still hold when “®” is replaced by a variety of other binary
operations and that, in particular, addition modulo 2% appears to offer some resistance to differential and linear
attacks. ’

4.4 Blumenthal, Bellovin (1996)

Blumenthal and Bellovin [5] advocate the generation of round keys for any symmetric block cipher — and in
particular for DES — in such a way that finding relations between any round key bits (over all rounds) is intractable
for the foreseeable future. The proposed key schedule has a considerable set-up time (equivalent to 43 encryptions
for DES), but 1tlhe-authors feel that this can be helpful in foiling brute force attacks in cases where the primary key is
relatively small. ' :

Proposal

The concept of “n-folding” is defined in order to take a variable-length input block and produce a fixed-length
output block such that each input bit contributes approximately equally in determining the value of each output bit.

The n-folding operation is described in [5] as follows. To n-fold a number X, replicate the input value to a length
that is the least common multiple of # and the length of X. Before each repetition, the input is rotated to the right by
13 bit positions. The successive n-bit chunks are added together using 1's complement addition (that is, addition

with end-around carry) to yield an r-bit result denoted (X )" .

Let the primary key K be of any desired length. Let E(P) represent encryption of plaintext P using DES in ECB
mode with key & (and let Dg(P) represent the corresponding decryption); let Ej.jp(P) represent encryption of
plaintext P using DES in CFB-64 mode with key k and initialization vector IV; and let Epy JAP) represent
encryption of plaintext P using 3-key triple-DES in CFB-64 mode with key {h} = hy,h,,h; and initialization vector
1V. Compute

4= <K>64

IV =Ep (4(4)
k=Dp (4(A4)

{h} = Ek:IV(<K>168)
R= E{h};lV (<K>768)
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The 768-bit value R is then used as the bits of the full set of round keys. This computation requires 2 DES
encryptions in ECB mode (for IV), 2 decryptions in ECB mode (for k), 3 encryptions in CFB mode (for {#}), and 12
triple-DES encryptions in CFB mode (for R), for a total of 43 encryptions (plus some extra time for the 64-, 168-,
and 768-folding operations, along with 7 DES key scheduling operations (1 for 4, 1 for E4(4), 1 for D4(A4), 1 for k
and 3 for {h}).

5. Evaluations

This section provides an analysis of two of the specific proposals given previously (analysis. of the others is
presented in the full report). The analysis for each proposal includes an evaluation with respect to the key schedule
design criteria from Section 3, where a specific proposal is said to satisfy a criterion if it performs as well as original
DES or better, and is said to fail the criterion otherwise. An evaluation is also provided with respect to the
constraints 1mposed by the DES-80 project and each proposal is assessed according to whether it can be said to
meet or miss each constraint. The important constraints under consideration for the DES-80 project are as follows:

_localization: changes are to be made to the key scheduling algorithm only (no other parts of the ‘DES
algorithm are to be modified in any way);

strength: the resulting DES-80 algorithm is to have equivalent or mcreased resistance to known attacks
(compared with the original DES algorithm);

bounded entropy: the key of the DES-80 algorlthm may be fixed or variable in size (and, in fact, a vanable
size may be preferable for a number of environments), but it must have a maximum length of 80 ‘bits.

5.1 Knudsen (1994)

General Comments

The concrete proposal requires 16 triple-DES encryptions, in terms of set- up time, to generate the round keys.

In order to achieve interoperability, either /7 has to be standardized (i.e., fixed in a publicly-accessible way) or it
needs to carried as a (not necessarily secret) part of the primary key (thus making the key 64 bits longer than is
explicitly necessary)

Analys;s with respect to DeSIgn Criteria

Dzﬁ”uston of Key Bits: This proposal satisfies this criterion because key bits are not used directly in the rounds, but
rather are used to (strongly) pseudorandomly generate round keys.

Key/Ciphertext SAC, BIC: This proposal satisfies this criterion because key bits are used to (strongly)
pseudorandomly generate round keys (thus, a change in any key bit(s) will lead to large, unpredictable changes in
every round key).

Intra-Round Keys: This proposal satisfies this criterion because key bits are used to (strongly) pseudorandomly
generate round keys (thus, it appears to require breaking triple-DES to find unknown round key bits).

Inter-Round Keys: This proposal satisfies this criterion because key bits are used to (strongly) pseudorandomly
generate round keys (thus, it appears to require breaking triple-DES to find relationships between round Key bits
from different primary keys).

Weak, Semi-Weak Keys: This proposal satisfies this criterion since it is extremely unlikely that the triple-DES
computation will generate palindromic or anti-palindromic sets of keys.

Quasi-Weak Keys: - This proposal satisfies this criterion since it is extremely unlikely that the triple-DES
computation will generate two sets of round keys that have a significant number of round keys in common.

Related Keys: This proposal satisfies this criterion since it is extremely unlikely that the triple-DES computation
will generate two sets of round keys with obvious relations between corresponding pairs of round keys in the sets.

Complementation Property: This proposal satisfies this criterion since the triple-DES computatlon ensures that
complementing the primary key does not simply complement each round key.

Set-Up Time: This proposal fails this criterion since it requires the equivalent of 48 encryptions and 3 key schedule
operations to generate the round keys.

Implementation Simplicity: This proposal satisfies this criterion since only doing triple-DES requires a fairly small
implementation effort beyond what would already be required for DES.
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Analysis with respect to DES-80 Constraints

Localization: This proposal meets this constraint because changes are confined to the key scheduling algorithm
alone.

Strength:  This proposal meets this constraint because resistance to linear, differential, and exhaustive key
cryptanalysis is substantially improved and no other cryptanalytic attack is known to be made any easier.

Bounded Entropy: This proposal misses this constraint because it is not clear how to turn this 112-bit key schedule
into an 80-bit key schedule (primarily because it is not clear that a DES key with 5<56 randomly-chosen bits,
padded out in a known, deterministic way to 56 bits, is necessarily “b” bits strong). Even if this can be resolved,
however, it would still not be clear how to restrict a primary key to 80 bits (i.e., other controls — outside the cipher
itself — would need to be put in place to ensure that longer keys cannot be used).

5.2 Biham, Biryukov (1995)

General Comments

It would be possible to produce an 80-bit proposal by eliminating Kp and using the DES s-boxes (no other
arrangement seems to readily give 80 bits), but with the two complementation properties mentioned, this is
effectively a 78-bit DES. ‘

It is possible to achieve backward compatibility with this proposal (if the DES s-boxes are used and if an all-zero K,
specifies the “standard” order of these s-boxes), which may be a useful feature in some environments.

Analysis with respect to Design Criteria

Diffusion of Key Bits: This proposal satisfies this criterion (as does DES) for all key bits in K. Since the bits in
Kg, Kp, and K essentially choose s-boxes and do not define round keys, they are not relevant to this criterion (i.e.,
they are not re-used through the rounds in the typical sense of round keys).

Key/Ciphertext SAC, BIC: This proposal clearly satisfies this criterion as well as DES for all key bits in K. This
seems, intuitively, to also be true for all key bits in K, since rearranging the order of the s-boxes should lead to an
unpredictable change in the ciphertext. The criterion should also be satisfied for all bits in K and Kp (since these
swap rows or complement columns in s-boxes), but this seems less obviously true and may require some further
analysis.

Intra-Round Keys: This proposal fails this criterion (as does DES) for all key bits in Kg. Since the bits in K, Kp,
and K essentially choose s-boxes and do not define round keys, they are not relevant to this criterion.

Inter-Round Keys: This proposal fails this criterion (as does DES) for all key bits in Kz Since the bits in Kg, Kp,
and K essentially choose s-boxes and do not define round keys, they are not relevant to this criterion.

Weak, Semi-Weak Keys: This proposal fails this criterion because it has 2%x2°=2% weak and semi-weak keys
instead of 2 (since it does not matter what values K, Kp, and K, have). Note, however, that it is still not worth
screening for them, since there is no higher chance of generating them at random than there is with original DES.

Quasi-Weak Keys: This proposal fails this criterion (as does DES) for the key bits in Kg. Further analysis is
required to determine whether or not modifying the s-boxes (through K, Kp, and K) suffices to prevent the
possibility of quasi-weak keys, but this seems doubtful. ~

Related Keys: This proposal satisfies this criterion (as does DES) for the key bits in Kg. Since the bits in K, Kp,
and K essentially choose s-boxes and do not define round keys, they are not relevant to this criterion.

Complementation Property: This proposal fails this criterion (as does DES) since modifying the s-boxes cannot
prevent the complementation property and the remainder of the algorithm is identical to DES.

Set-Up Time: This proposal satisfies this criterion conceptually; in practice the criterion is only satisfied if the s-box
contents can be manipulated and installed into the round function quickly and easily.

Implementation Simplicity: This proposal satisfies this criterion conceptually; in practice the criterion is only
satisfied if the s-box contents can readily be manipulated (through K, Kp, and K.) by the implementation. '

Analysis with respect to DES-80 Constraints

Localization: This proposal misses this constraint because it is completely predicated on the notion that s-boxes can
be loaded into the DES implementation; new s-boxes demand an implementation change that is beyond the confines
of the key scheduling algorithm. It is worth noting, however, that DES chips do exist in the marketplace that allow
loading of s-boxes [4] (although [4] does not mention how time consuming this process might be) and that software
implementations may be written in such a way as to dynamically link new s-boxes at run-time, if this is desired.
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Strength: This proposal meets this constraint because resistance to linear, differential, and exhaustive key
cryptanalysis is substantially improved and no other cryptanalytic attack is known to be made any easier.

Bounded Entropy: This proposal meets this constraint if Kp is eliminated and if the original DES s-boxes are used.
The key size may easily be varied from 56 to 80 bits, inclusive (sizes below 56 bits are possible if and only if full-
entropy sizes below 56 bits are possible for ongmal DES; that is, if DES keys with 5<56 randomly-chosen bits,
padded out in a known, deterministic way to 56 bits, are necessarily “b” bits strong).

6. A New Key Schedule

This section introduces a new key scheduling algorithm that makes extensive use of the DES round function to
pseudorandomly generate a set of round keys from a primary key. This proposal adopts the key scheduling model
embraced.by [5] and [11], but begins with a primary key of maximum length 80 bits and requires less than two DES
encryptions to produce the full set of round keys. The pseudo-independence of the round key bits relies on the
statistical properties of the DES round function (which are generally acknowledged to be good). It is conjectured
that given certain sets of 4 round keys %; ... kj,,, it is hard to compute the subsequent round keys ;s ... ki, Where
“hard” means that a work factor of roughly 2 operations is required (note, however, that if even a smgle round key
can be determined in DES, the original cipher is trivially broken, so sets of four round keys are likely to be very
difficult to find). Furthermore it is conjectured that computing previous round keys from one or more known round
keys requires roughly 2% operations (i. e., a work factor equivalent to simply doing an exhaustive search on the
primary key).

This proposal was motivated by the observation that the DES round function takes exactly 80 blts of input (32
bits of data and 48 bits of key); thus, an 80-bit primary key may be used directly as input to the round function. It is
postulated that applying this function iteratively (with an appropriate updating procedure) will produce a
pseudorandom stream of bits suitable for constructing the full set of round keys.

Proposal
The following notation is employed:
K = the primary 80-bit key
Ky = the high-order (most significant, leftmost) 32 bits of K
KL = the low-order (least significant, rightmost) 48 bits of X
fi = a 32-bit temporary variable
f9 = the j* byte of the variable f; (where f,“’ is the least significant byte)
k; = a DES round key (i = 1...16)

“a<<<p” = the variable a circularly left-shifted (rotated) by b bits
“a||b” = the variable a concatenated with the variable b
F(d,y) = the DES round function with 32-bit data d and 48-bit round key r

Constructing the set of round keys is a tWo-step process. The steps are specified in pseudocode as follows.
for (i=1;i<24;i++)
{
Ji=F(KuK)

K=(K<<<(i+8))
§<H (K + f7) mod 2%

for (i=0;i<3; i++)
for(’—l’]<4 ) e s £ Dl £
keij = foin? Hﬁsmf | foies? | foiea? W Soies? |l Siine?

This algorithm computes the DES round function 24 times, modifying its input at each iteration. - The 24 32-bit
outputs from Step 1 are used in Step 2 to construct the 16 48- b1t round keys.

Note that the iteration-dependent rotation in Step 1 (that is, rotation by (i + 8) bits at the / iteration) helps to
defend against a related-key attack on this key schedule. Furthermore, using addition modulo 2% as the

168




modification operation (rather than XOR) ensures that primary keys that are complements of each other do not lead
to identical sets of round keys. ) '

It is not difficult to find two primary keys K and H that produce the same /i in Step 1. Furthermore, it is
conceivable that X and H can be found that produce both the same £, and the same J2- Therefore, from Step 2, the
first byte (or possibly the first two bytes) in the first four correspondin% round keys can be made to be identical (that
is, £, = b, B, ="p,0 O =p 0 kO =50 ang possibly @ = 1®, O = p,® @ = b O[O = p @) Given,
however, that the remaining bytes of these four corresponding round keys will be different with very high
probability and that all remaining round keys will be statistically independent to virtually any degree of analysis, the
above situation does not describe a related-key attack and presents no known security risk. :

The key scheduling model embraced by [5] and [11] is also used here because it is recognized that differential
cryptanalysis of DES with independent round keys requires 2%° chosen plaintexts and finds the 768-bit key in time
equivalent to about 2° encryptions (not significantly better than a dictionary attack requiring 2% chosen plaintexts).
If an improvement is at all possible against independent round keys, it is conjectured [11] that it would nevertheless
require more than the 2* chosen plaintexts used to attack DES with dependent round keys (i.e., with the original key
schedule). Furthermore, an estimate for linear cryptanalysis of DES with independent round keys is not known but
is conjectured to be high. One approach would be to recover the full round key of the final round and then
successively “peel off” rounds until the 768-bit key is recovered, but a linear attack on the final round key will
require many linear expressions (including expressions with a probability that requires many known plaintexts) in
order to uniquely determine the key. These points argue in favour of independent round keys. However, since 768-
bit keys are impractical for most environments, (strongly) pseudo-independent round keys are chosen as an
attractive and practical alternative.

General Comments

It is likely that the round keys will look like 768 random bits to any degree of analysis, so the goal of increased
resistance to linear, differential, and exhaustive search cryptanalysis with no change to the underlying algorithm
appears to be achieved.

This proposal has a set-up time that is comparable to original DES, so it may be amenable to environments in which
frequent re-keying is common.

Analysis with respect to Design Criteria

Diffusion of Key Bits: This proposal satisfies this criterion because key bits are not used directly in the rounds, but
rather are used to pseudorandomly generate round keys. :

Key/Ciphertext SAC, BIC: This proposal satisfies this criterion because key bits are used to pseudorandomly
generate round keys (thus, a change in any key bit(s) will lead to large, unpredictable changes in every round key).

Intra-Round Keys: This proposal satisfies this criterion because key bits are used to pseudorandomly generate
round keys (thus, it appears to require breaking an iterated DES round function with 80 bits of unknown input to
find unknown round key bits).

Inter-Round Keys: This proposal satisfies this criterion because key bits are used to pseudorandomly generate
round keys (thus, it appears to require breaking an iterated DES round function with 80 bits of unknown input to
- find relationships between significant numbers of round key bits from different primary keys [see Section 0]).

Weak, Semi-Weak Keys: This proposal satisfies this criterion since it is highly unlikely that the iterated DES round
function will generate palindromic or anti-palindromic sets of keys.

Quasi-Weak Keys: This proposal satisfies this criterion since it is highly unlikely that the iterated DES round
function will generate two sets of round keys that have a significant number of round keys in common.

Related Keys: This proposal satisfies this criterion since it is highly unlikely that the iterated DES round function
will generate two sets of round keys with obvious relations between most or all corresponding pairs of round keys in
the sets.

Complementation Property: This proposal satisfies this criterion since the iterated DES round function ensures that
complementing the primary key does not simply complement each round key.

Set-Up Time: This proposal satisfies this criterion since it requires less than 2 encryption operations to establish the
set of round keys. .

Implementation Simplicity: This proposal satisfies this criterion because the iterated DES round function requires
little implementation effort beyond what would already be required for DES.
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Analysis with respect to DES-80 Constraints

Localization: This proposal meets this constraint because changes are confined to the key scheduling algorithm
alone.

Strength:  This proposal meets this constraint because resistance to linear, differential, and exhaustive key
cryptanalysis is substantially improved and no other cryptanalytic attack is known to be made any easier.

Bounded Entropy: This proposal meets this constraint because the length of the primary key, although variable, is
restricted to a maximum of 80 bits.

7. Conclusions

The study summarized in this paper has reviewed and analyzed an extensive list of key scheduling proposals for
the Data Encryption Standard. The final recommendation of the study is the new key scheduling proposal presented
in Section 6. This proposal appears to meet all requirements and objectives of the DES-80 project. Alternative
recommendations, both those that almost meet the DES-80 requirements and those that fall outside the scope of the
DES-80 project, are also presented in the full report. - :
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Abstract

In this paper we study the round permutations (or S-boxes) which
provide to Feistel ciphers the best resistance against differential crypt-
analysis. We prove that a Feistel cipher with any round keys and with
at least 5 rounds resists any differential attack if its round permutation is
differentially §-uniform for a small §. This improves an earlier result due
to Nyberg and Knudsen which only held for independent and uniformly
random round keys. We also give some necessary conditions for a mapping
to be almost perfect nonlinear (i.e. differentially 2-uniform).

1 Introduction

The underlying motivation of this work is the design of a Feistel cipher which
resists all classical attacks. The DES cipher seems to have this property since
no cryptanalysis is really more efficient than an exhaustive search for the key.
But it would be very important to find a new secure DES-like cipher because
the size of the secret-key used in DES makes a brute-force attack feasible. The
main problem is therefore to replace the S-boxes used in DES with another
function which resists both differential and linear cryptanalysis. In this paper
we study the round permutations (which play the same role as the S-boxes)
which ensure that the corresponding Feistel cipher is secure against differential
cryptanalysis.

In [NK93] Nyberg and Knudsen gave a condition under which a Feistel ci-
pher resists differential cryptanalysis “in average”. They actually gave an upper |
bound on the probability of any r-round differential of a Feistel cipher, for r > 3,
but this bound only holds when the round keys are independent and uniformly
random. This result does therefore not rule out the existence of some weak
round keys for which a differential attack would be feasible.' A lower bound on
the complexity of a practical differential attack can then only be deduced if it
is additionally assumed that the hypothesis of stochastic equivalence [LMM91]
is satisfied, i.e. if the differentials have roughly the same probabilities for all
round keys. But we here show that this further assumption does usually not

*On leave at Institute for Signal and Information Processing, ETH Ziirich, Switzerland
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hold for a Feistel cipher. We nevertheless prove that the bound given by Ny-
berg and Knudsen still holds for any round keys. This stronger result implies
that a Feistel cipher resists any differential attack if the round permutation is
differentially é-uniform for a small 6. The resistance of a Feistel cipher against
differential cryptanalysis does therefore not require any further assumption on
the round keys or on the key scheduling algorithm.

We first briefly recall in Section 2 how differential cryptanalysis works. Sec-
tion 3 is then devoted to the complexity of a differential attack of a Feistel
cipher: we show why Nyberg-Knudsen’s result does not suffice to ensure that
some Feistel ciphers are practically secure against differential cryptanalysis.
We afterwards improve this result since we show that a Feistel cipher with any
round keys resists differential cryptanalysis as far as its round permutation is
differentially é-uniform for a small §. Section 4 gives some general properties
of differentially 6-uniform mappings and some necessary conditions for a per-
mutation to be almost perfect nonlinear (APN), i.e. differentially 2-uniform.
Following a result due to Carlet, Charpin and Zinoviev [CCZ97] we also prove
that the smallest value of § for which a power polynomial is differentially &-
uniform is strongly related to the number of codewords of Hamming weight 3
and 4 in some binary cyclic codes with 2 zeroes.

2 Differential cryptanalysis of iterated ciphers

In an iterated block cipher with r rounds the ciphertext is obtained by iterating
T times an invertible function F, called the round function, depending on a
secret parameter K called the round key. The 7 round keys are usually obtained
from a unique secret key by a key scheduling algorithm. -

A differential attack [BS91] of such an iterated cipher consists in encrypting
some plaintexts which only differ from a fixed value a. The difference between
two plaintexts X and X’ is here defined by a group operation ® on the set of
plaintexts:

AX=XX!

where X'~ denotes the inverse of X’ with respect to the group operation ®.

This attack exploits the fact that the round function of an iterated cipher is
usually cryptographically weak. This means that the value of the round key K
can usually be determined from the knowledge of the difference between the
inputs of the function, AX, and from both outputs Y and Y’. The basic idea
of a differential attack therefore consists in submitting two different plaintexts
X and X' = X ® « for encryption and in estimating the value of the input
difference of the last round AY(r — 1) (see Figure 1). If the round function is
cryptographically weak, it is then possible to recover the value of the last-round
key K.

Differential cryptanalysis will then be successful if there exists an (r — 1)-
round differential (o, B) such that

P=P[AY(r—1)=BlAY(0) = o, K1 = ky,... , Kro1 =kra] (1)
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b

Y'(0) =m’ Y'(1)

Figure 1: Differential cryptanalysis of an iterated cipher

is high. As soon as such an (r — 1)-round differential is known, the attack
consists in iterating the following procedure:

e Choose a plaintext m uniformly at random and submit m and m ® « for
encryption.

e Suppose that AY(r — 1) = g and determine all corresponding possible
values for K.

After many steps one value for K, will occur signiﬁcantly more often than the
other ones. The number of such iterations required for recovering the value of
the last-round key is then at least [LMM91]

1
1
P—m

where P is given by Equation (1) and n is the plaintext size.. An iterated
cipher then resists differential cryptanalysis if, for a fixed plaintext difference,
the probability distribution of the output difference at the last-but-one round
is close to the uniform distribution.

The main problem in this attack is to estimate the probability of a dif-
ferential as expressed in Equation (1) since the first (r — 1) round keys are

unknown. In most cases we are actually only able to compute the probability - -

of a differential when the round keys are independent and uniformly random,
i.e. P[AY(r — 1) = BJAY(0) = a]. If we want to deduce from this probability
whether a differential attack is feasible, we have to assume that the probability
of a differential is roughly the same for almost all round keys. This additional
condition called the hypothesis of stochastic equivalence was pointed out by Lai,
Massey and Murphy [LMM91]. o

Definition 1 (Hypothésis of stochastic equivalence) For an (r—1)-round
differential (c, §),

PIAY(r—1) = B8|AY(0) = o, K1 = ki1,... , Kr1 = kr—1] = P[AY (r — 1) = B|AY(0) = ¢

for almost all round keys ky,...kr—1.
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If this hypothesis is not satisfied, a differential may have a low probability in
average but its probability may nevertheless be high for some particular round
keys. This would mean that some round keys would be weak in the sense that
the corresponding cipher would not resist differential cryptanalysis.

3 Resistance of Feistel ciphers against differential
cryptanalysis

We are now interested in the complexity of a differential attack of a Feistel
cipher when the difference is defined by the bitwise XOR denoted by +.

3.1 An upper bound on the average probability of any differ-
ential

We here only consider Feistel ciphers with block size 2n without expansion. In
this case, the round permutation F is designed as follows:

F: F}xF; — F3 x F§
(L,R) +— (R,L+f(R+Ky))

where + denotes the exclusive-or operation, K; € F% is the i-th round key and
f is a permutation over Fj, called the round permutation. Using the particular
structure of this round function Nyberg and Knudsen [NK93] gave an upper
bound on the probability of any r-round differential for r > 3 when the round
keys are independent and uniformly random. They actually proved the following
result:

Proposition 1 [NK93] For a Feistel cipher with block size 2n, with round per-
mautation f and with independent uniformly random round keys, the probability
of any r-round differential (o, 8), a # 0, for r > 3 satisfies

2

Ji
P[AY (r) = BIAY (0) = o] < o5

where 65 = mgxril%d{X €Fy, f(X +a)+ f(X) =8}

This proposition then implies that any Feistel cipher with at least 5 rounds
resists differential cryptanalysis if the round permutation f is such that §; is
small and if the hypothesis of stochastic equivalence is satisfied. In order to
use this theoretical result in practice, Knudsen [Knu94] called a Feistel cipher a
practically secure Feistel cipher if it resists differential cryptanalysis under the
assumption of independent uniformly random round keys. But it unfortunately
seems that the hypothesis of stochastic equivalence does not hold in general for
a Feistel cipher. '
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3.2 Hypothe'sis of stochastic equivalence for Feistel ciphers

As an example we here show that the hypothesis of stochastic equivalenée is not
satisfied for a small Feistel cipher with block size 8. The round permutation f
of this cipher is defined by

f: F24 - F24
T -zl

where the vector space F# is identified with the finite field with 16 elements.
For this small Feistel cipher, we give the probabilities of two different 3-round
differentials (a, 8)

e a = 00000001 and § = 011000001. When the round keys are independent
and uniformly random, we obtain

P[AY(3) = BIAY(0) = o] = 9.8 1073

But when the first 3 round keys are fixed, we get
P[AY(3) =B|AY(0) = o, K1 = k1, Ka = kg, Kz =k3] =0 for 50 % of the keys
= 781073 for 25 % of the keys
=3.1210"% for 25 % of the keys

o a= 00010110 and = 00010110. When the round keys are indepgndent
and uniformly random, this 3-round differential has probability

P[AY(3) = B|AY(0) = o] = 1.56 1072

But for fixed round keys this probability actually equals

P[AY(3)= ﬂIAY(O) = Q, Kl = kl,Kg = kz,Ks = k3] =0 ‘ for 75 % of the keys
= 6.25 1072  for 25 % of the keys

It then turns out that for this particular Feistel cipher the hypothesis of
stochastic equivalence does not hold. Furthermore the computation of the prob-
ability of some 3-round differentials for many different small Feistel ciphers leads
to similar results. This then implies that the result given by Nyberg and Knud-
sen does not allow to deduce if a differential attack of a Feistel cipher is feasible
in practice.

3.3 A practical result on the resistance of Feistel ciphers against
differential cryptanalysis

The hypothesis of stochastic equi\_(alence is nevertheless satisfied for any Feistel
cipher in some particular cases. We here denote by §;(a,8) the number of
solutions X € F} of the equation '

fX+a)+f(X)=8
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Proposition 2 For any Feistel cipher with block size 2n, the hypothesis of
stochastic equivalence exactly holds for any 2-round differential (a,B). More-
over we have for any o, ar,BL,Br € F§ and for any round keys k1 and k2,

P[AY(2) = (B1,Ar)|AY (0) = (ar,ar), K1 = k1, K2 = k3] =
é¢(ag,BL +ar)é +a
PIAY(2) = (61, B)AY (0) = (e, 0m)] = LRt en)iy(Bu, o +an)
Proof. We denote by R(Z) the right half of the input of the (i + 1)-th round.

SimilarlyZ (i) = f(R(¢)+ K;+1). When the round keys are fixed, the probability
of a 2-round differential can be decomposed as follows:

P = P[AY(2) = (B, Br)IAY (0) = @, K1 = k1, K3 = ko]
= P|AZ(1) = Br + ar|AR(1) = B, AY (0) = (ar,ar), K1 = ki1, Ky = k|
x P[AZ(0) = B + ar|AY(0) = (oL, ar), K1 = ki]

Since R(0) is uniformly random, we obviously have that

6¢(ar,ar + Br)
2n

PIAZ(0) = B + ar|AY(0) = (ar,agr), K1 = k)=
On the other hand, we have

P[AZ(1) = Br + ar|AR(1) = B, AY(0) = (ar,ar), K1 = k1, Ky = kp] =
> (P[AZ(1) = Br + ar|ARQ1) = BL, R(1) + kz = 1]

r

x P[R(1) + ky = r|AR(1) = B, AY (0) = (a1, ar), K1 = k1))

Since R(1) = f(R(0) + k1) + L(0) and since L(0) is uniformly distributed, the
random variable R(1) is uniformly distributed even if AR(1) and AY(0) are
fixed. We then obtain that

P[AZ(I) = fr +aR|AR(1) = P, AY(0) = (aL,aR),Kl =k,Ky = kz] =

PIAZ(1) =Br+ar|AR(1) =f1] = 8(r, ar + Br)

2n

0
The hypothesis of stochastic equivalence is also satisfied for some 3-round
differentials as asserted in the following proposition.

Proposition 8 For any Feistel cipher with block size 2n, the hypothesis of
stochastic equivalence ezactly holds for any §-round differential ((ar,ar), (BL,Br))
such that agr =0 or B = ap.

We additionally have that for any round keys ki, ks and ks,

8(ar,B) 6;(Br,Pr +ayr)

P[AY (3) = (BL, Br)IAY (0) = (@L,0), (K1, K3, K3) = (k1, k2, k3)] = oon

6¢(ar,ar) 6s(ar, Br)

P[AY (3) = (ar, Br)IAY (0) = (arL,ar), (K1, K2, K3) = (k1, k2, k3)] = o7n
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Proof.

® Qp = 0.
In this case, the first round of the cipher is a trivial round. Thus AR(1) =
ay, with probability 1. The random variable R(1) is then uniformly dis-
tributed when L(0) and R(0) are uniformly random. We then obtain

P[AY (3) = (8L, Br)|AY (0) = (ar,0), (K1, K2, K3) = (K1, k2, k3)] =

5f(aL,ﬂL) 6_f(ﬂLaﬂR + CYL) ‘

P[AY(3) = (ﬂL’ﬂR)IAY(I) = (aRaaL))_(K27K3) = (k2’ k3)] = 92n
where the last equality is deduced from Proposition 2.

e fr=ocagr
In this case AZ(1) = 0. Since f is a permutation, this can only occur
when AR(1) = 0. This implies that the second round of the cipher is here
a trivial round. We then have -

P[AY (3) = (ar,Br)|AY (0) = (op,or), K1 =k, Ky = kg, K3 = ks] = |

b¢(ap,a .
—I—(—-éi—l’)P[AZ@) = Br|AR(2) = ag, AY(0) = (ar,ar), Ky = k1, K2 = ka2, K3 = kj]

On the other hand the random variable R(2) is uniformly distributed in
this case even if the differences AR(2), AY(0) and the first two round
keys are fixed. This implies that

P[AZ(2) = ﬂRlAR(Z) = ap,AY(0) = (ar,ar), K1 = ki, Kz = ko, K3 = k3] =
PIAZ(2) = BRIAR() = az)
and we therefore conclude that ;

5/(ar, ar) 6;(ar, r)

PIAY (3) = (ar, Br)|AY (0) = (ar,ar), (K1, K2, K3) = (k1, k2, k3)] = o7n
O
~ Using that the hypothesis is always satisfied in these both cases, we now
prove that the upper bound on the probability of a differential given by Nyberg
and Knudsen still holds for any round keys.

Theorem 1 For a Feistel cipher with block size 2n, with round permutation f
and with any round keys ki, ... ,kr, the probability of any r-round differential
(a,B), a #0, for r > 3, satisfies

P[AY (r) = BIAY(0) = o, Ky = ky,... , Ky = k] < 52{;

where 65 = mg.xrcrxliacl{X € Fon, f(X +0a)+ f(X) =B}
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Proof. We first prove this result for any 3-round differential ((ar, ar), (8L, 8r))
with (ar,ar) # (0,0). The probability of any 3-round differential (a, ) can
be decomposed as follows:

P = P[AY (3) = (8L, Br)|AY (0) = (aL,0r), K1 = ki, K3 = kg, K3 = k3]
= P[AZ(2) = Br + dIAR(2) = B, AY (0) = (a1, ar), K1 = ki, Ky = ky, K3 = kg
d

6;(ar,d+ ar) 6¢(d, B + ar)
X 22n

e If ap # ar, AR(1) cannot be zero.
If agy # 0, we conclude that

P[AY (3) = (BL,Br)IAY (0) = (ar,ar), K1 = ki, Ky = ke, K3 = kj]

52
< '2_2'% ZP[AZ(z) = ﬂR + dIAR(z) = ﬂLa AY(O) = (aL,C!R),Kl = thZ = kZ’ K3 = k3]
d£0
62
I
< oon

If ap = 0, the previous proposition gives

P[AY (3) = (BL,Br)IAY(0) = (ar,0),K; = k1, Ko = ko, K3 = k3] =

8¢(ar,Br) 65(Br, Br + 1) < by
22n . = 92n

since O = 0 would imply that oy, = 0 and hence that o = 0.
o If ap = ar, the previous proposition gives

P[AY (3) = (ar,Br)IAY (0) = (ar,0r), K1 = k1,K2 = k2, K3 = k3] =

b6;(ar,ar) §5(ar, Br) < 5
22n = 92n

since ag = 0 would imply that az, = 0.

We now obtain the same upper bound for any r-round differential for r > 3
by induction on r. O

This new theorem implies that a Feistel cipher with any round keys is secure
against differential cryptanalysis as far as the round permutation f is such
that 65 is small. This only depends on the following property of the round
permutation defined by Nyberg and Knudsen [NK93J:

Definition 2 A function f over F} is differentially §-uniform if, for all o €
F3, a #0, and for oll § € Fg,

HX €eF3, f(X+a)+f(X)=p} <6
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Using [LMM91, Theorem 1] we obtain a lower bound on the complexity of a
differential attack of a Feistel cipher, i.e. the number of encryptions it requires.

Corollary 1 Let us consider a Feistel cipher with block size 2n, with at least
5 rounds and with a differentially §-uniform round permutatiozn f. The com-
plezity of a differential attack against this cipher is at least A%L;IIZ.

4 Differentially §-uniform permutations

The number of solutions of f(X + a) + f(X) = B is obviously even. This im-.
plies that the smallest possible value § such that a permutation is differentially
S-uniform is § = 2. Differentially 2-uniform permutations are also called almost
perfect nonlinear (APN) permutations. They correspond to the round permu-
tations which provide the best resistance against differential cryptanalysis.

4.1 APN permutations over Fs» for even n

From now on we identify the vector-space F3 with the finite field Fon. Any
permutation of Forn can be expressed as a unique polynomial of Fau[X] of
degree at most 2" — 1.

We first give a necessary condition for a polynomial to be APN when n is
even.

Proposition 4 Let n be an even integer. The mapping f : z — Zf;o'l a; X* is
not APN over Fon if

2n—1

3
E azj = 0
Jj=1

Proof. We first notice that 0 and 1 are two solutions of Equation

271
FX+D)+FX)= ) o (2)
i=0
Let now z = a" where « is a primitive element in For and u = Eg-'-l- Since
zt =2,z isin Fy and z ¢ {0,1}. It then satisfies 22 + £ + 1 = 0. We then
281
obtain that if Ej=31 azj =0, z = a* is another solution of Equation 2. m]

This result notably implies that no power polynomial permutation, i.e.
f(z) = z* with ged(¢,2" — 1) = 1, is APN when n is even.

4.2 Differentially 6-uniform power polynomials and cyclic codes
with two zeroes

We now only consider the mappings on Fy» which can be expressed as a power
polynomial X?. In this case we only have to examine for ¢ a representative
of each cyclotomic coset modulo 2" — 1. When f is a power polynomial, the
differentially é-uniform property can be characterized as follows:
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- Proposition 5 The power polynomial mapping f : = + zt is differentially 6-
uniform if and only if for all ¢ € Fan, ¢ # 0, the equation X+1)+Xt=c¢
has at most § solutions in Fan.

In [CCZ97] it is proved that the power polynomial function z — z is
APN over Fan if and only if the cyclic code C;; of length 2® — 1 with defining
set {1,£} has minimum distance 5. The link between differentially §-uniform
power polynomials and cyclic codes is still tighter since the number of solutions
of the equations (X + 1)* 4 X * = ¢ is related to the number of codewords of
weight 3 and 4 in Cy .

Proposition 6 Let Ci; denote the cyclic code of length 2" — 1 with defining
set {1,t} and let 8. be the number of roots in Fan of polynomial Py(X) =
(X + 1)+ X* + c. The number A3 (resp. As) of codewords with Hamming
weight 3 (resp. 4) in C1; is given by

I

A3 = (2—.’13:1—)(51—2)

2" -1
24

Ay = D 82—t 46— 2)

cEFgn

Proof. A binary vector £ = (zg, ... ,Z2n_3) belongs to C1, if and only if its
syndrome is zero. The word with support {i1,42,43,44} then lies in C; ¢ if and
only if, for z; = o, there exists (a,b) € Fan X Fan, a # 0 such that

(z1 +a)t + 2 =b=(z3+a)’ +x}

i.e. 717,210  + 1,2307 1, x3a~1 + 1 are 4 distinct roots of P, with ¢ = f;

Since 0 is a root of P, if and only if ¢ = 1, we obtain that the codewords of
‘Hamming weight 3 of ;¢ exactly correspond to the 3-tuples (z,y,z + y) with
non-zero distinct coordinates such that z(z +y)~! and z(z +y)~! + 1 are non-
zero roots of P;. Similarly the codewords of weight 4 in Ci1, exactly correspond
to the 4-tuples (z,y, 2,z + y + 2) with non-zero distinct coordinates such that
z(z+y), 2z +y)"  +1, 2(z +y) ! and 2(z +y)~! + 1 are 4 distinct roots
of P,. O

Note that if n is odd and if the minimum distance of C1,t is 3, the smallest
possible value for § such that z — z? is differentially §-uniform is 8 since
61 = 2 mod 6. Some cyclic codes with 2 zeroes and with minimum distance 3
were examined in [CTZ97].

4.3 Some APN power polynomials

Table 1 lists all known exponents ¢ (up to equivalence) such that z — zt is APN.
But the only APN power polynomials X* amongst these 4 families which can
be used as a round permutation of a Feistel cipher are those corresponding to
t € K; with¢ > 6. It was actually proved that the mapping ¢ — zt with ¢ € T is
not secure against linear cryptanalysis [LW90, CV95]. The power polynomials
corresponding to ¢ € Q; or t € W can neither be used since a differential
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exponent smallest value of § such that | notation for the corresponding ref.
: f is differentially é-uniform cyclotomic coset
2% +1 gecd(nd) o; [Nyb93]
-2 -1 2 if n is odd I [Nyb93, BD93|
4 if n is even ,
2% 2t +1 ] 2ifn is odd and ged(n,i) =1 K; [KasT1]
2°7 +3 2 if n is odd w [Dob]

Table 1: Minimum value of § for some power polynoniials on Fan.

attack using higher order differentials is feasible when the Hamming weight of
is small [JK97]. This attack exploits the fact that any ciphertext bit can be
expressed as a polynomial in all plaintext bits of degree at most d = w(t)™3
where 7 denotes the number of rounds

4.4 A lower bound on the degree of APN power polynomials
over Fon

Janwa, McGuire and Wilson [JW93, JMW95] proved that for most values of ¢,
the code Cy; of length 2" — 1 does not have minimum distance 5 for infinitely
many values of n. Their proof relies on Weil’s theorem which gives a lower
bound on the number of rational points on an absolutely irreducible curve
over Fon. We here use a similar argument for proving that for a fixed n the
mapping = ~ z* is not APN as far as ¢ exceeds a certain value.

Theorem 2 Suppose that the curve

X4+ Y 4+ (X 4+Y +1)
X+Y)X +1)(¥ +1)

gt(X’ Y)=

is absolutely irreducible ovei' Fy. The mapping x +— zt is not APN over Fon,
n>5, if ‘

t< 2% 445

Janwa, McGuire and Wilson [JMW95] proved that g;(X,Y) is absolutely
irreducible for any £ = 3 mod 4, £ > 3 and for some values such that £ = 1 mod 4.
They actually conjectured that this curve is absolutely irreducible for all values
of ¢ except those lying in the cyclotomic cosets Q; and K;(see Table 1). This
statement also holds for any ¢ < 100. We therefore give in Table 2 some values
of t for which z + z* is not APN.

5 Concluding remarks

We here proved that a Feistel cipher without expansion with any round keys re-
sists differential cryptanalysis if its round permutation is differentially §-uniform
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n 11 113|156 | 17|19]21 23|25
tmin | 7191114117123 |31]42|58]80

-~
©

Table 2: Bound tmiy such that £ +— z* is not APN over Fon for all ¢ < tmn,
tg Q;UK;

for a small 6. But the only (up to equivalence) known APN permutation which
can be used in a Feistel cipher is the power polynomial function over Fan de-
fined by z — £2” %' *1 where n. is odd and ged(n,) = 1. It nevertheless appears
that any new result concerning either the number of roots of polynomials over
a finite field or the weight distribution of some cyclic codes would have some
important consequences for the design of new provably secure Feistel ciphers.
It is however important to note that the resistance of Feistel ciphers against a
differential attack is still an open problem when the difference is not defined by
the bitwise exclusive-or but by another group operation on the set of plaintexts.
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Abstract

We investigate the cryptographic role of random functions used in Generalized Feistel Ciphers in
achieving provable security against differential and linear cryptanalysis.

The provable security against differential and linear cryptanalysis of block ciphers can be estimated
from the maximum probabilities of differential and linear hull. In case of DES-like block ciphers, these
probabilities are known to be smaller than twice the square of the maximum differential and linear
hull probabilities of one-round. Even though differential characteristic and linear approximation prob-
abilities decrease as the serial round iteration number increases, known upper-bounds of probabilities
of differential and linear hull are constant and not less than the square or twice the square of the
maximum of the probabilities of one-round. It seems an unproven conjecture that increasing the se-
rial iteration number would fail to achieve stronger provable security against differential and linear
cryptanalysis.

This paper introduces the Generalized Feistel Ciphers, multlple random functions are used in a
usual Feistel network, whereas most DES-like block ciphers use only one random function. We prove
that the proposed Generalized Feistel Ciphers achieve the estimation in which the upper bound of the
differential probability is strictly less than or equal to the square of the maximum differential proba-
bility of one-round, even if a non-injective function is there in the possible position. We also show that
a kind of duality holds between the differential probabilities and the linear hull probabilities among
these Generalized Feistel Ciphers, which implies that the similar as our obtained results on prov-
able security against differential cryptanalysis holds for provable security against linear cryptanalysis
according to these relations of the duality.

Keywords :
DES-like block ciphers, Generalized Feistel Ciphers, Differential cryptanalysis, Linear cryptanalysis,
Provable security, Design of block ciphers

1 Introduction

This paper investigates what types of block ciphers have provable security against differential cryptanal-
ysis [BS91] and linear cryptanalysis [Mat93] and which types have desirable provable security.

The Data Encryption Standard and Recent Cryptanalysis: The Data Encryption Standard (DES) [NBS77],
published in the 1970’s, is now the most widely used cipher throughout the world. Due to rapid advances
in cryptanalysis as well as computing technology over the past 20 years, particularly the recent discovery
of differential cryptanalysis by Biham and Shamir [BS91] and linear cryptanalysis by Matsui [Mat93],
the cryptographic strength of DES is being questioned by an increasing number of researchers as well as
practitioners. Structurally DES can be viewed as being obtained by the iteration of a basic transform
which was first proposed by Feistel [F73, FNS75] and will be also called a DES-like transform in this
paper.

Toward the design of provably secure block ciphers: The security of a block cipher against differential
cryptanalysis is characterized by the differential characteristic. If we design a block cipher secure against
differential attack, the block cipher should have a very small probability of differential characteristic. Fur-
thermore, Lai, Massey, and Murphy [LMM91] observed that we should consider not only the maximum

1This study is a part of an activity within the Information & Communication Security Project of Ministry in Japan. He
is temporarily transferred from Hitachi, Ltd.

2He is now working for TOSHIBA CORPORATION.

3He is a sub-leader of the Project.
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differential characteristic but also the maximum differential probability for more accurately evaluating the
security of block ciphers. We should remark that the maximum differential probability is hard to compute
for a given block cipher, though the maximum differential characteristic can be obtained for DES and
FEAL by using elegant algorithms [Mat94, OMA95].

Recent work by some researchers, based on the estimation of the maximum differential probability, shows
that by using a function secure against differential and linear cryptanalysis, it is possible to construct DES-
like block ciphers that are provably secure against differential and linear cryptanalysis [NK95, Nyb94].
Nyberg and Knudsen [NK95] proved that the maximum differential probability (D Pp.az) of Feistel ciphers
with 4 rounds can be estimated from the maximum differential probability of one-round(dpmez) as D Pras
< 2dp?,,.. Furthermore, Aoki and Ohta [AO97] showed that, if the used random function is a permutation,
then the relation DPp.. < dp2,,, holds for Feistel ciphers with 3 rounds. Matsui [Mat96] proposed
new types of Feistel ciphers and practical methods for implementing Nyberg et al.’s idea. Recently
Nyberg [Nyb96] further considered a design of a block cipher based on a generalized Feistel network
originated from Generalized DES [S-B83], which uses smaller s-boxes.

Limitations of the previous approach: A limitation of Nyberg et al.’s approach is that even if we increase
the serial-iteration number of the basic DES-like ciphers, we fail to show that the corresponding block
ciphers hold a smaller upper bound to maximum differential probability than ciphers with 3 or 4 rounds.
The other problem is that results by Aoki and Ohta [AO97] indicate that in case of DES-like block ciphers
permutations can achieve more provably secure against differential and linear cryptanalysis than non-
injective functions, though designing cryptographic permutations is harder than designing cryptographic
non-permutations. ,
Our results: The contribution of this paper is to show that ciphers more provably secure against differential -
and linear cryptanalysis can be achieved by using a general Feistel structure with multiple functions per
round. Our proposed Generalized Feistel Ciphers( first defined in [Sch93]) are based on the serial iteration
of the following one round structure:

(YH1 YL) - (S(X[n k2) T(XH,kl) @f(S(XLy k2)1 k3))

Note that functions S and T must be permutations because of the requirement of dec1pherb1hty, whereas
function f is not necessarily a permutation.

We prove that, for some types of Generalized Feistel Ciphers, the relation DPpo. < dpZ,,. holds for 2
round iterations, even if they adopt a non-injective function. Moreover, we prove that DP,,,, is exactly .
less than dp?,,, by using joined estimation parameters of non-zero minimum differential and linear hull
probablhtles of function f. We should remark that no block ciphers is known whose DP,,,, is smaller than
dp?,... We also show that a kind of duality between differential probabilities and linear hull probabilities
holds among our classified Generalized Feistel Ciphers. This kind of duality was indicated in [Mat94] for
DES-like block ciphers with a single function and this duality implies that the similar as our obtained
result on provable security against differential cryptanalysis holds for provable security against linear
cryptanalysis.

2 Definition

2.1 Generalized Feistel Ciphers

In this paper a r round block cipher is constructed with round function ¥ = F(X,K) and X,Y €
GF(2)N,K € GF(2)M, where X is an input, K is a round key and Y is an output. From a plain text P a
cipher text C is obtained as C = F(... F(F(P,K;),K3) ..., K,). Where i-th round key K;(1 <i <r)is
an element of GF(2)™, and each K; is supposed to be uniformly random. The function F is bijective in
terms of input X. When this round function F is as described in Fig. 1 we call the block ciphers consisting
of F Generalized Feistel Ciphers [Sch93]. i.e. round function F is constructed with some random functions
y = f(z,k),y = S(z,k) or y = T'(z,k), where z,y € GF(2)*,k € GF(2)™ and a bitwize XOR operator &.
In particular, functions S and T are both injective in terms of input z, but function f is not necessarily
injective.
Generalized Feistel Ciphers are classified as follows.

1. Basic type (called B-type); round function F is constructed with only one random function f (Fig.2). ’

2. Left-sided type {called L-type); round function F is constructed with only one 1nJect1ve random
function T (Fig.3). 186 :
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Figure 1: Structure of Generalized Feistel Ciphers

3. Right-sided type (called R-type); round function F is constructed with only one injective random
function S (Fig.4).

4. Left-sided complex type (called LB-type); round function F is constructed with random functions
f and T (Fig.5). :

5. Right-sided complex type (called RB-type); round function F is constructed with random functions
f and S (Fig.6).

6. Both-sided type (called LR-type); round function F is constructed with random functions S and T
(Fig.7). ’

7. Both-sided complex type (called LRB-type); round function F is constructed with random functions
£, S and T (Fig.8).

Xy . X Xy X; Xy X
'f‘c—k : k—»g

]

H YL H L H YL

Fig.2 B-type Fig.3 L-type Fig.4 R-type

T k2 krvxg i}::—kl kzoxg J:%ii—kl ¥3 k;g

I
H L H L %.<Y'L

Fig.5 LB-type Fig.6 RB-type Fig.7 LR-type Fig.8 LRB-type

Concerning about key schedules, by modifing the well known key schedule structure of DES, round keys
of each types of Generalized Feistel Ciphers are considered to be generated(see APPENDIX A). In this
case, the secret key length of each type of Generalized Feistel Ciphers is the same and individual round
keys k1, k; and k3 are generated from different compression permutations.

2.2 Probabilities of ~round Diﬁ'erential and Linear Hull

To analyze r-round iterated block ciphers from the viewpoint of provable security against differential
and linear cryptanalysis, we define the differential probability dp of random functions and linear hull
probability Ip of random functions as follows.

Definition 1 [LMM91], [Mat96], [Nyb94] Let y = f(z,k) with z € GF(2)*,k € GF(2)™ be a general
random function , for given differential values Az and Ay |g1GF(2)" the differential probability of f is




defined as following.
dps(Az — Ay) == aver Pr;ob{f(:c Az, k) @ f(z, k) = Ay}.

For given masking values I'z and I'y € GF(2)" the linear hull probability of f is given by
Ips(Ty — I'z) := aver |2 Prob{z ¢ Tz & f(z,k) e Ty =0} — 1%

where o denotes the dot product between a pair of elements in GF(2)™.
dps(Az — Ay) and lps(I'y — I'z) satisfy the followng conditions.
. Property 1 (Property of transition probability) [A097], [Mat96]

def(Ax —Ay)=1, lef(l‘y —TI'z) =1.
Ay Tz

When f is bijective,
> dps(Az — Ay)=1, Y Ip;(Ty-Tz)=1,
Az ) Ty

are satisfied.

Property 2 [A097], [Mat96] f is injective, if and only if dpg(Az — 0) =0 for all Az # 0 or
IpsTy = 0)=0 forallTy#0.

Definition 2 [0G94] Let x be a type of Generalized Feistel Cipher and r be the number of it’s rounds.
For the i-th round input X (1) = (X g (1), X1(2)),1 < i < r and thei-th round output Y (i) = (Yu(2), Yp.(3)),
1<i<r with X(1) = (Py,PL) and Y(r) = (Cx,CL), the probability of r-round differential on x is

defined as a Markov chain as follows. : o

DPg(r,AP —+ AC) = Z f[ dps (AXL(i) —+ AXy(@)® AYL(i)).
AX,AY i=1
DPL(r,AP - AC) = Y fIde(AXH(i) — AX (i) ® AYL(3)).
AX,AY i=1 .
DPa(r,AP—AC) = Y. [[dps(AX1() — AYu()).
AX,AY i=1
DPp(r,AP = AC) = Y Y [[dpr(AXu() — Au(i))dps (AXL() — Au(i) ® AYL ()
AX,AY Au i=1
DPrp(r,AP - AC) = Y [[dps(AX1() = AYR())ips (AYH(G) — AXH(i)  AYL()).
AX,AY i=1
DPir(r AP~ AC) = 3 [[dpr(AXu(i) —» AVa(i) © AYi(@))dps(AX5() » AV (9).
AX,AY i=1
DPLrp(r,AP - AC) = Y 3 ﬂde(AXH(i) — Aw(i))dps (AX (i) — AYr(3)

AXAY Awi=1
dpy (AYH (7)) — Aw(i) ® AYL(i)) .

Here Z denotes the sum total over these parameters as AXy(2),...,AX H (r), AXr(2),...,AX(r),

AX,AY
AYy(1),...,AYg(r — 1), AYL(1),...,AYL(r — 1) and AX(3) = AY (i — 1) for alli. Each Y or Y
Au Aw
denotes the sum total over these parameters as Au(l),. .., Au{r) or Aw(1),...,Aw(r).

For given masking values TP and T'C, the probability of r-round linear hull on x is defined as a

Markov chain as follows. Z denotes the sum total ovb¥Bthese parameters as TXg(2),...,.TXu(r),
CX,TY .




TX1(2),...,0XL(r), TYx(1), .. .,[Yu(r — 1), FY(1),...,T¥;(r — 1) and TX(5) = TY (i — 1) for all i.
Each Z or Z denotes the sum total over these parameters as T'v(1),...,Iv(r) or [z(1),...,T'z(r).

Ty Tz .
LPg(r,fC —TP) = > fIzpf (TYL() - I'X (i) @ TYH ().
TX,TY i=1
LP(r,TC—TP) = Y [[lor(rYz() - IXg()).
TX,TY i=1
LPr(r,fC —»TP) = Y ﬁzps(rx,, (i) @ TYx(3) — TXL(3)).
rx,ry i=i
LPrp(r,TC —TP) = Y [[lpr(TYL() - TX5())lps(TYL () — TYr(i) @TX ().
rX,ry i=1
LPpp(r,;lC —»TP) = Y Y H Ips (Tw(3) — T'X (i) Ips (TX 1 (5) — To() @ TYu(5)).
TX,TY Tv i=1
LPr(r,TC —TP) = Y [[ipr(TYp() - TXg())lps(TYa(i) @ TY2() — TX1G)).
TX,TY i=1
LPLrp(r,TC —TP) = Y > T[lor(TYL() - TXu())ips(T2(i) — TX 1))
XY Tz i=1

Ips (TY (i) — T2(3) @ TY1(3)).

For above random functions f, S and T', let ps, ps and pr be maximum values of each dps(Az — Ay),
dps(Az — Ay) and dpr(Az — Ay) for all such Az # 0 and Ay.- Further, let dr, gs and gr be
maximum values of each lps(I'y — I'z), Ips(Ty — I'z) and Ipr('y — I'z) for all such T'y # 0 and
I'z. In the case of provable security against differential cryptanalysis, each upper bound to maximum
values DP,(r) := mazapzo,acDPy(r,AP — AC) is expressed by polynomials of parameters Df, Ps OF
pr [NK95]. In the case of provable security against linear cryptanalysis, each upper bound to maximum
values of LP,(r) := mazrcyzo0,rpLPy(r,[C — I'P) is expressed by polynomials of parameters gf, gs or
gr [Nyb94].

About these probabilities of differential and linear hull, the following results are easily confirmed from
the above definitions.

Property 3 For any type of x
DPy(r +1) < DPy(r) foranyr >1,
LPy(r +1) K LP,(r) foranyr >1.

These properties give the expectation that upper bounds to DP,(r) and LP,(r) also decrease as the
number of round r increases for any type of Generalized Feistel Ciphers y. We prove that this expectation
is true excluding LR-type in Section 4.

Property 4 For all types of x, DPy(r,AP — AX) and LP,(r,T'C — I'X) define the transition proba-
bilities as follows.

ZDPX(T, AP -+ AX)=1 foranyr>1,
AX

ZLPX(T,FC’ —=TX)=1 foranyr>1.
TX

These properties are effectively used in our estimation of upper bounds.

2.3 Duality between Probabilities of Differential and Linear Hull

Between r-round probabilities of differential and linear hull on Generalized Feistel Ciphers, there are
relations of duality. This duality is different from the ’links’ given by S.Vaudenay et al. [CV94]. In
the case of B-type block ciphers a relation of duality has begp known as the duality structure between
differential cryptanalysis and linear cryptanalysis on DES-like ciphers [AO97], [Mat94]. )




Theorem 1 DPg(r,AP - AC) < LPg(r,'C —TP) (1)
DPr(r,AP — AC) & LPR(‘I‘, I'c —-T1P) 2)

DPg(r,AP - AC) < LPy(r,I'C —TP) (3)

DPyp(r,AP— AC) < LPgrp(r,'C —TP) 4)

DPgp(r,AP - AC) <& LP.p(r,JC —TP) (5)

DPrp(r,AP = AC) & LPyp(r,TC — TP) (6)

DPrrp(r,AP — AC) & LPyrg(r,IC —TP) (N

(In this place < shows it is possible to change each other)

According to these expressions of DP, (r, AP — AC) and LP,(r,I'C — I'P) in Definition 2, above each

reciprocal changing < is achieved by bijective correspondence between differential values A X, (7), AY. (%)
and masking values I'X, (1), Y. ().
For example of (2) correspondences AXg(1) < I'X(i),AXr(i) « I'Xy(i) and AYL(i) < T'Yg(i)
bijectively change dpr to Ips. In point of changing between dpr and Ips(or dps and lpr), the relation
between input and output is also changed by each other(this changing is assured by the injectivity of
functions S and T'). Same correspondences are applied to each cases of (1), (3), (4), (5), (6) and (7).

From these relations of duality, estimation results to r-round differential probabilities are adjusted to
correspondence r-round linear hull probabilities with respectively changing py, ps and pr to gy, g and

gs.-

3 Previous Results and Some Conjectures(Provable Securit-y
on B-type, L-type and R-type Block Ciphers)

This subsection examines previous estimations of provable security and some conjectures about the esti-
mations are considered.

3.1 Conjectures about Injectivity

3.1.1 B-type '

B-type structure is used by DES-like ciphers and was first estimated as following.
Theorem 2 [Nyb94] [NK95] For anyr >4

DPs(r) <2p}, LPp(r)<2q}.

These results were obtained from analyzing 4-round DES-like ciphers and using the fact of Property 3.
So as mentioned in introduction this estimation result does not depend on the number of round r. But as
many experiment results [BS91, Mat93, OMA95] and thoretical results [LMM91, OG94] show that Feistel
ciphers are possible to be cryptanalytically strengthened by increasing these iterating number, so in this
cases of estimation these upper bounds to DPg(r) and LPg(r) are also expected to change depending on
the number of round r.

Conjecture 1 Upper bounds to probabilities of r-round differential and r-round linear hull decrease as
the number of rounds increases.

The following subsection introduces new estimation parameters to confirm that this conjecture is true in
cases of Generalized Feistel Ciphers having random function f. On the other hand, it was shown that if
random function f is injective, the upper bounds become more small as follows.

Theorem 3 [AO97] If f is a permulation then
DPs(r) <p%, LPg(r)<q;  foranyr >3.

This estimation is obtained from essentially using Property 2. The converse statement of this theorem is
not yet confirmed.

Conjecture 2 If f is noninjective, upper bounds to probabilities of r-round differential and r-round linear
hull are no less than p3 and ¢3. ' :

However, the next subsection proves that without this injed@0ity assumption for random function f, all. -
Feistel ciphers of LB-type have the same upper bound of p"}.




3.2 Conjectures for Lower Limit of Upper Bound

3.2.1 L-type

The L-type structure is used by the new block cipher MISTY?2 and has been estimated as follows.
Theorem 4 [Mat96] For anyr >3

DP.(r) <pr?, LPi(r) < ¢r°.

3.2.2 R-type

R-type has not been used yet but from Theorem 4 above and the duality property of Theorems 1 (2) and
(3), an estimation is easily achieved as follows.

Theorem § For anyr >3
' DPr(r)<p%,  LPa(r) <.

In any cases of these simple types of B, L and R, provable security against differential and linear crytpt-
analysis seems to depend on whether the random functions used are injective or not.

Conjecture 3 Upper bounds to the probabilities of differential and linear hull are not less than the square
of p« and g,.

The following subsection introduces new estimation parameters to confirm that this conjecture fails in
cases of LB and RB-types.

4 New Results (Provable Security on LB-type, RB-type, LR-
type and LRB-type Block Ciphers)

4.1 Estimation of Provable Security to Differential Probability of LB-type
This subsection examines The provable security of LB-type.

Theorem 6 The upper bound to the r-round differential probability of LB-type is estimated as

DPrp(r) < ma:v{prpf,p?} for anyr > 2.

Here injectivity of f is not assumed, but when pr < py it happens that DPpp(r) < p“}(for any r > 2).
This is negative answer to Conjecture 2.

Proof

Property 3 is enough to prove the case of r = 2.

Ay Aary
ALL
f— DPyp(2,AP — AC)
S = Y dpr(APg — ABl)dps (AP, — ABL & ACL)
AR2 P AB1,AB2
) dpr(AP, — AB2)dps(ACL — ACy & AB2).
ACH ACy,

First, in case of ACp = 0, as AC # 0 from the assumption AP # 0, last terms of above equation give
AB2 =ACyH #0.
Moreover, when AP, =0, as dpr(APL — AB2) = 0 (by Property 2), the estimation becomes

DPrp(2,AP — AC) =0.
Elesewhere when APy, # 0, as dpr(APL — AB2) < pr, the estimation becomes

DPyp(2,AP — AC) < pr ) dpr(APg — ABl)dps (AP — ABL® ACL)
‘ APl
pros Y dpr(APy — AB1)
ast 191
= prp;. (by Property 1)

IA




Second, in the case of AC # 0,
DPrp(2,AP - AC) < p¢ Z dpr(APy — AB1)dps(APL — AB1 & ACL)dpr(APL — AB2)

ABLAS2 v
= ps Y dpr(APy — AB1)dps(APL — AB1® ACYL).
ApL
Thus when AP, = 0, with paying attention to ASl = ACy, # 0 and APy #0,
DPLp(2,AP — AC) < pgdpr(APy — ACL) < proy.
Last when APp #0,

DPL(2,AP — AC) <p/* ) " dpr(APy — AB1) = pj.
. Apl

From the above results we obtain the estimation;

DPyp(2) = maz{prps,ps°}-
(QED.)

This LB-type of Generalized Feistel Ciphers has a round that uses 2 times as much key as the Feistel
ciphers such as B-type, L-type and R-type. So 2-round of this LB-type could be compared to a 4-round
one of the usual type, but as it has shown in these Theorem 2, 3, 4 and 5, estimations of these 4-round
usual Feistel ciphers are 2p%(in case of B-type, here injectivity of f is not assumed) and p%(in case of
L). If LB-type is considered to be obtained by strengthening the simple B-type by adding a more secure
function T, then as it is usual to suppose pr < py so maz{prps,p3} < 2p}. If LB-type is considered to be
obtained by strengthening the simple L-type by adding a more secure function f, then as py < pr so max
{prps,p%} < P}. These strengthening processes are summarized as maz{prps,p3} < maz{2p},p%},
and LB-type seems more secure Feistel ciphers against differential and linear cryptanalysis than L-type
and B-type. ' '
Moreover, when adding non-zero minimum differential probability of f defined as

€f 1= minazo,aydps(Az — Ay) >0
to the estimation parameters, the upper bound is estimated more small as follows.

Theorem 7 If ps > pr is satisfied then following estimations are possible.

DPyp(2k) < maz{ prps —(1—pr)or oot esips,

ps* — (1= ps)ps — pr) i) €55’} for any k> 1,
DPrp(2k—1) <maz{ pros — (1 —pslor Yect esins’, :
pr2 = (L~ ps)(ps — p1) icy e5'ps'} for any k > 2.

This estimation means that provable security depends on round number and as round number increases
the probabilities of upper bounds decrease. This gives an affirmative answer to Conjecture 1. Moreover,
as it happens that DPrg(r) is actually smaller than p%, we can get a negative answer to Conjecture 3.
Especially the limit of this upper bound gives a lowest upper bound as:

1-pr s _ (1—ps)(ps —pr1)
maz{prps — ————&5PsPT:P§ ~ ‘ £5ps}-
! = T py IPIPT Py gy ps}
1- 1-— - ‘
2 fDsPT OF (= py)(ps —pr) €spys is considered to be a gap between upper bounds of Theorem 6
1—esps 1 —esps

and Theorem 7. When defining ¢ as ¢ := py — ¢, this gap becomes a decrease function of a parameter ¢
and this fact shows that narrow distribution of differential probabilities of one-round may be effective to
strengthen the Feistel ciphers. The proof of this theorem is given by following step.

Lemma 1 Given a differential.value of plaintext AP = (APg,APL) and a differential value of ciphertext
AC = (ACy,ACL),
when ACp =0
192
DPpp(r,AP — AC)|(ac,=0) < prps — prosAlr —2), (1)




and 'L;;hen ACL #0 _
DPLp(r, AP — AC)|(ac,#0) < P} — ps(ps — pr)A(r — 2), (2)
where
A(r) == >_ DPrp(r,AP — (0,Az)).
Az#£0
Inequality (2) shows that if py > pr then upper bounds become smaller than p? but if p;y < pp then
bounds exceed p}. So we suppose py > pr to get a negative answer to Conjecture 3.

Proof
DPrp(r,AP — AC) is expressed as a followng figure of network and an expression.

{

ApB3
£ Aald

DPLB(T, AP — AC)

= Z DPrg(r —2,AP — (Aa2, Aa3))

A2 Aa2,Ac3,AG1,AB2

f A2
dpr(Aa3 — AB2)dps(Aa2 — AB2 & ACL)
dpr(Aa2 — AB1)dps(ACL — AB1 & ACHE).
ABL f
ACyH A‘CL

In the case of ACL =0, A1 = ACy # 0 and the second to last term of right side of the above equation
implies Aa2 # 0. Thus

DPrp(r,AP —- AC) < pr Z DPrp(r -2,AP — (Aa2,A03))dpr(Aa3 — AB2)dps(Aa2 — AB2)
Aa2#0,A03,A82
< prps Z DPrp(r —2,AP — (Aa2,Aa3))
Aa2#0,A03
prps —pros », DPLp(r—2,AP — (0,A03)) = pros — prosAlr — 2).
Aa3#0 ’
Last, in the case of ACL # 0, as dps(ACL — AB1 & ACx) < ps

DPyp(r, AP — AC)

l

* % %
< pr Y,  DPip(r—2,AP — (Aa2,Aa3))dpr(Aad — AB2)dps(Aa2 — A2 ® ACL)
Aa2,Aal3,AB2 )
= ps Z *%k* +pg Z * kK .
Aa2=0,Aa3,A02 Ac2#0,Aa3,AL2

When Aa2 =0, as Af2=ACL # 0 and Aa3 #0 so
D E **x%x < pspT E DPrp(r —2,AP — (0,A03)) = prps A(r — 2).
Aa2=0,A083,A82 Aa3#0
Moreover as

s > *%x < pf Y. DPup(r—2,AP — (Aa2,A03))
Aa2#£0,Aa3,A02 Ac2#0,Ac3

= pt—piA(r—2),

we can obtain

DPpp(r, AP — AC) < p} — p A(r — 2) + psprA(r — 2). (QED)
Series {A(r)} define a kind of asymptotic inequalities as follows. v ' '
Lemma 2
A(r) < s —prAlr ~ 1),
—A(r) < —ef+efA(r —1).
Proof

In this cases, A(r) is expressed asa following figure of netv!'g%s and an expression to be evaluated.




Alr) = > DPip(r—1,AP — (Aa,Acl))
ARL g Aal Aa#0,Aal, AL
dpr(Aal — AB)dps(Aa — AB)

< pr Y. DPip(r—1,AP - (Ao, Aal))

ot

T —
%ﬂf Aa#0,Acl
Y L = pf—ps E DPrp(r —1,AP — (0,Aqal)).
Acl#0
In the same way we can get
Alr) 2 ef - 81{1(7 -1). - (QED.)

To solve these asymptotic inequalities, the initial values are estimated as;

Lemma 3 /
A(2) < ps,
—A(2) < —&5 +e4p5-
Proof
A(2) is expressed as a following figure of a network and an expression.
%pﬁ APy
Tam A@)= Y. dor(APg — ABL)dps(APL — ABL ® Aa)

-~

Ba#0,A0,A81
dpr(APL — Af)dps(Aa — Af).

In this case as dps(Aa — AB) < py and —dps(Aa — Aﬁ) < —gy s0

A@Q) < pr Y, dpr(APy — ABl)dps(APL — AB1© Ac)

Aa£0,A81
= psr—ps Y dpr(APy — ABL)dps(APL — AP1)
ABL
< py (When APp =0),

—A@2) < —er Y, dpr(APg — ABl)dps(APL — APL® Ad)
Aa#0,AL1
= —es+er Yy dpr(APy — AB1)dps(APL — AB1)
Afl
< —gf +e5p5 E dpr(APy — AB1) (from the assumption of py > pr and when AP # 0)
AfB1
= —¢&f +&5ps.
(QED.)

In case of —A(2) estimation the assumption ps > pr is essentially used to obtain the result.
From Lemma 2 and Lemma 3 series {—A(r)} are solved as

k
—A(2k) < —(1—ps) > _ef'pi? forany k> 1,
=1
k-1
—AQRk-1)< —(1 - eftpi™! for any k> 1.
( ) S —(1—ps) Y es'py 104 70F 21 k2

=1




As it is easy to confirm that —A(1) < 0 and Z?=1 is 0 so the second inequality is true in the case of k = 1.
From these results the right side of two inequalities of Lemma 1 are expressed from these parameters of
Ps, pr and ¢, and results are obtained as follows.

k—2
DPyp(2k~1,AP — AC)|(ac,=0) S p1Ps — (1 —pf)pr Y &s'py forany k> 2,
i=1
k=1 ‘
DPyp(2k,AP = AC)|ac,=0) < prps — (1 —ps)pr Y es'ps forany k > 1.
i=1
and from the assumption of py > pr
k-2

DPyp(2k —1,AP — AC)|(ac.#0) < PF — (1 —ps)os —pr) D es'p} forany k> 2,

=1
k-1

DPyp(2k, AP — AC)|(ac,z0) S P2 — (1 —ps)(p5 —pr) D &'p; foranmy k> 1.

i=1

Thus we obtain the results of Theorem 7.

4.2 Estimation of Provable Security to Differential Probability of The Other
Types

In this subsection the estimation results of differential provability of the other types are mentioned.

4.2.1 B-type

First B-type cipher is examined with using parameter 5 to show an affirmative answer to Conjecture 1-
as follows. v

Theorem 8

DPp(2k) < YR o +2p% — TE (o — ph)e,f for any k> 1.
DPp(2k—1) < maz{ L1 7 pst + 2051 = T2 (s — ph)es,
S i+ 2pk — bl pst - ph)esi} for any k > 2.

In this case, upper bound also decreases as the number of rounds increases but this bound does not
become smaller than p}. This is caused by the injectivity of function f. This bound becomes smaller tha:
2 4

Py €f .2 2 3:. 1— Ef .2

- 24(> ps°). Gap from 2p? is : .
1—p; 1—¢gmpp i P 1-pf —espsJ

2p% and the limit of upper bound is pi+ 7

4.2.2 RB-type
Theorem 9

DPrp(r) <psps for anyr >2.

As same as Theorem 6 estimation of 2-round RB-type could be compared with estimations of 4-round
R-type or 4-round B-type and as pspy < maz{p%,2p%} RB-type seems a more secure Feistel ciphers than
R-type and B-type. As same as in case of Theorem 7, by using the parameter ey, the examination result
of RB-types is given as follows.

Theorem 10

DPrp(2k) < psps — ps(1 — py) Zf;ll efipst for any k > 1.
DPrp(2k —1) < psps —ps(l —py) Yo efipy for any k > 2.

The limit of upper bound is py ps———:——pf—e PsPs and a gap from the result of Theorem 9 is —————jf—e FDFPS-
1 —esps 105 _ 1—-e5py




4.2.3 LR-type
Theorem 11

DPyp(r) < maz{ps®,pspr,pr’} for anyr > 3.

In this case, because of maz{p%,pspr,p%} = maz{p%,p%} the security of LR-type is not so different as
that of L-type or R-type and using minimum probability as £y is not effective to estimate bound more
exactely. The upper bounds are same as when using parameters of g and er.

4.2.4 LRB-type
Theorem 12

DPrrp(r) < maz{psps,pspr} ~  foranyr >2.

In this case, as maz{psps,pspr} < ma:z:{Zp?, p%, %} so the 2-round LRB-type seems more secure Feistel
ciphers than 6-round L-type, R-type and B-type because of same reasons as LB-type . With using
parameter €5, the upper bound is strictly estimated as following.

Theorem 13
k-1 ;-
DPrrp(2k) < maz{ pros—pros(l—ps) Yoy erins™?,
k-1 _ 4 4
psps — pspr(1 —py) it er'psi1} for any k> 1.
k-2 5 i
DPrrp(2k—1) < maz{ pros—pros(l—ps) Yot es'nsi ™, :
k-1 _ 5 -
psps — pspr(1 —pg) Tocy ex'psi1} for any k > 2.
. . 1—-ps 1—ps
The limit of upper bound is maz{ pspr — ————¢espspr,PsPs — ————€5spsPs} and a gap from
. ) 1 —erps " l—egpy
. — Py — Dy
Theorem 12 is ————¢ T OF ———¢ S.
T—egpy TPIPT O Ty, 7PIP

4.3 Estimation of Provable Security to Linear Probability

As described about the duality structure in Theorem 1, results of estimation of r-round probability of
linear hulls are easily obtained as follows.

Theorem 14 The r-round probability of linear hull on LB-types is estimated as
LPrp(r) < grgs  forallr > 2.

Moreover when using minimum probability 8¢, estimation is given by

LPLp(2k) < grar —ar(l —q5) X401 65'as for any k > 1.
LPyrp(2k—1) < gqrqr — qr(1 —g5) 21:12 6fiq_fi for any k > 2.

Theorem 15 In case of RB-types r-round probability of linear hull is estimated as
LPgrp(r) < maa;{qsqu,qﬁ} for any r > 2.

and more strictly if g > qs then it can be estimated as

LPrp(2k) <maz{ gsqr — (1 —gs)as Loy 65'as?,

ar® — (1 — g5)(gr — gs) E:-:ll 85t} foranyk>1.
LPrp(2k—1) <maz{ gsqr — (1 - q7)as S0 2 657,
a2 — (1 — q5)(gy — 4s) o7 b5°q5'} for any k > 2.

Theorem 16

LPLr(r) < maz{gs®,gsqr,q97° }19¢ for any r > 3.




Table 1 Estimation results ‘

T:
ype B-type L-type R-type LB-type RB-type LR-type LRB-type
Diffe tial
eren 2p2 % r: maz{pspr,p}} psPs maz{p}, pspr,pe} | maz{psps,pspr}
Li hull
near an 242 a% a% gsqr maz{gsqs,q2} | maz{al,gser.e}} | maz{gses,qrar}
Round
dependency | getected | nondetected | nondetected detected detected nondetected detected
Theorem 17

LPprp(r) < maz{qsgs,qrqr} for anyr > 2.

By more strict estimation with using 67 estimation becomes

LPpgp(2k) <maz{ gsqs —gsqar(1—g5) Yooy 85°gs" 1,

k— i i
arqs — aras(1 — gr) Tncy &5'qs1} forany k > 1.
LPrp(2k —1) <maz{ gsqs —gsar(1 —q7) Tooi 85°qs5 1,
aras — aras(l — a5) Youoy 65'gs 1) for any k > 2.

Acknowledgements

We would like to thank S.Tsujii(leader of the Information & Communication Project) for his well advice
and T.Saiki(staff of Telecommunications Advancement Organization of Japan) for his support to our
activity.

5 Conclusion

We have introduced Generalized Feistel Ciphers and classified them to estimate the upper bounds to the
probabilities of r-round differentials and r-round linear hulls. Table 1 shows estimation results.

Estimation duality between the differential probabilities and the linear hull probabilities is found in
this table. In these cases of LB-type and RB-type upper bounds become p% or q} without supposing
injectiveness of a function f. We have also shown that if Generalized Feistel Ciphers include a B-type
random function then provable security depends on the round number of these block ciphers. Each
estimation results of upper bounds are expressed as polynomials of p,. or ¢. and the lowest degree.of
these polynomial seems to be less than or equal to 2 and it may be true for any types of Feistel ciphers,
each round of which has 2-inputs and 2-outputs. Moreover without describing in this paper, by using
mixed random functions in Generalized Feistel Ciphers as differential and linear approximation equation
per one-round are supposed to be more difficult to solve than when using only one random function so
Generalized Feistel Ciphers may be useful in strengthening these usual block ciphers.
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Appendix A

To construct a Key scheduler which generates m-bit round key k;, my-bit round key ks and m3-bit round
key k3 from M-bit secret key, we modified the well known key scheduler structure of DES as following.

secret key
<490
CP-0
2m 2m
[ shift | | shift |
kP TCPa|;
kz~42—-|“2 CP-2 |
ka-ﬁ—l“‘* CP-3 |
| | shift | | Shift |
k; CP-1
k CP-2
k CP-3

..................

Figure: Structure of Generalized Key scheduler

In this figure, in spite of only using one compression permutation CP-3 which generates mz(= 2u3)-bit
round key k3, two compression permutations, CP-1 which generates m;(= 2u;)-bit round key k; and
CP-2 which generates mz(= 2u2)-bit round key k,, are added.
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