Proposal of a Fast Public Key Cryptosystem

Kouichi Itoh! Eiji Okamoto, Masahiro Mambo

School of Information Science
Japan Advanced Institute of Science and Technology
E-mail : k-itou@jaist.ac.jp, okamoto@jaist.ac.jp, mambo@jaist.ac.jp

Abstract. Public key cryptosystem is a means to establish a secure channel, and has been
used recently. For the implementation on simple hardware in case of mobile communication, for
example, a scheme with small amount of computation is necessary. RSA is one of the famous
public key cryptosystems. RSA and its derivative schemes have high level of security, but require
large amount of computation.

A linear cryptosystem whose complexity depends on the knapsack problem requires small
amount of computation, but there is a general algorithm to cryptanalyze it, and almost all linear
cryptosystems have been broken.

This paper proposes a cryptosystem whose encryption and decryption look like a linear
cryptosystem, yet its security is high.

Index Terms — Public keys, random key choice, key trace, combination of key choice.

1 Introduction

This paper proposes a public key cryptosystem which runs fast and has high level of security. In
the proposed scheme, Alice chooses some keys from many public keys and encrypts a plaintext
according to the chosen keys. An outsider Oscar cannot detect which keys are used for the
encryption of the plaintext. But Bob can trace Alice’s random key choices with secret infor-
mation and decrypts the ciphertext. Number of combinations of Alice’s random key choices is
exponentially large, and this works as a trapdoor against Oscar’s attack.

In encryption, the proposed scheme requires small number of operations, though the size of
public keys is large. Computational complexity for encryption is given as o(z%), where z is the
bit length of r of ciphertexts (m,r).

The process of decryption looks like linear cryptosystem, so that decryption is fast. Compu-
tational complexity for decryption is given as o(z?2). It is smaller than that of some other public
key cryptosystems because RSA and its derivative require o(z?) for decryption.

2 The Proposed Public Key Cryptosystem
1.Proposed scheme

public information : (e; (mod M),k; (mod N)),(1<¢<n),M,N,n,l

secret information : P,Q,t (mod N),¢;,q’

Where,

}Present affiliation is Fujitsu Labratories LTD. S Project Group. E-mail:kito@flab.fujitsu.co.jp

224

(ei,k:)(1 < ¢ < n) are pairs of public encryption keys.

e; is random.

k; satisfies

ki =tg; (mod P),(1< i< n). €))
for t, ¢; and P.

M is size of plaintext and requires no particular conditions.

N is a product of two large primes P, Q.

¢; satisfies

(¢maz)' < P (2)
for I, and o(¢;) = o(P‘lr), where gp,, is @ maximum value of ¢;, and
g = g}
where ¢} are primes and different each other. For any u; and g5 ged(u;, @) = 1is satisfied.
2. Encryption

Alice chooses ! pairs of keys from n pairs of public keys(permitted to choose same keys).
From a plaintext s (mod M), Alice composes a pair of ciphertext (m,r) as

m=e,+e+...+e+s (mod M) 3)
r=koky...k; (mod N)

where €,,¢€;,...,€; and kg, ky, .. ., k; are chosen keys.
3.Decryption
Bob decrypts (m,r) with secret information. At first, Bob figures following r':
o= ()l

) t'gaqs ...
= (ugp...q (mod P).

From (2), r’ and g,qs...q are equated.
= Qugp...q
i i
= UgUp...U Qo9 ---q-
With /, Bob decrypts ciphertexts as follows.
1. Let i = 1.
2. Figure out ' mod ¢!

3.1 r"=0 (mod ¢}), Let m :=m — ¢; (mod M) and 7' :=r'/g;, otherwise Let i := 7 + 1.

4. repeat 2., 3. until 7/ = 1, and Bob gets m as a plaintext.

225

4.Ezample of Encryption and Decryption

(e1,k1),(€e2,k2), (€3, k3),(eq,kq) are public keys, and let [= 3. Alice chooses l(: 3) keys from
n(= 4) keys such as keyl, keyl and key3. In this case, ciphertexts are

m=e;+e+ez+s (mod M)
r= k1k1k3 = t3q1q1q3 (mod N)

and these are sent to the Bob.
At first, Bob figures

=) -r (mod P) = wuiu3q1913
and decrypts ciphertexts as follows.

o ' =wuguz- ¢igigs =0 (mod gj), so that v’ :=7'/q,
m:=m—e; (mod M)...keyl is detected.

o ¥ =ujuz-¢lgs =0 (mod q{), so that ' := v'/¢,
m:=m—e; (mod M)...keyl is detected.

o (=0 (mod g¢j,q;) are not satisfied.)

o r'=u3z-¢5=0 (mod g}), so that ' :=1'/gs,
m:=m—e3 (mod M)...key3 is detected.

¢ From 7' = 1, trace finished.

With these procedures, Bob detects that Alice had chosen keyl, keyl and key3 in encryption,
and gets a plaintext s=m —e; —e; — €3 (mod M).

3 The Trapdoor in the Proposed Scheme

In the proposed scheme, number of all possible combinations of Alice’s random key choices works
as a trapdoor. In this section, we describe the number of all poss1ble combmatlons of the key
choices. \

Suppose that Oscar intends to detect Alice’s random key choices. From ciphertext r and
public information k;, Oscar tries to solve

r=kPES - kT (mod N) @)

for z; (with “all-search”), without secret information. Hence, number of solutions z; equals to
number of Alice’s random key choices and we consider the number.

From 1

| pm——
r = koky...k; (mod N)

number of solutions of (4) equals to number of integer solutions of
1tz +...tz, =1 (5)

where 0 < z; < I. And number of solutions for (5) corresponds to number of possible permuta-
tions such that [of Os are divided into n sections with n — 1 of | s.(see below example case in

226

n=4and [=3.)

l

>

o0l_lo1_
z1=2 *2=0 z3=1 Z4+=0

(O=1’|=n_1)

Number of Os contained in ith section equals z;. Hence, all solution for (5) corresponds to all
number of permutations and number of permutations is

nt+1-1Cl. (6)

Note that (6) increases exponentially according to the increment of n,l. Hence, Bob decrypts
ciphertexts with dividing 7' by ¢; for some finite steps, but the Oscar must analyze r which takes
exponentially number of possible cases.

4 Argument over the Security of the Proposed Scheme

In this section, we suppose various analysis for the proposed scheme and describe conditions of
parameters for the security of the proposed scheme.

1.Analysis for m.
We suppose an analysis for m of ciphertexts (m,r). From (3), m is written as
m=e +e+...+¢+s (mod M).
With z;, this equation can be transformed into
m=er) +ex2+...+ ez +5 (mod M).- ')

(7) can be solved for z; and s with L3 algorithm and plaintext s seems to be revealed from
ciphertext m.
If we consider z; is a number of times that ith key is chosen, another condition for z; 18

Titz2+... .+, =1 (8)

Hence, z; and s are solution of (7)(8).

From previous section, number of solutions of (8) is 1+n—1C1. And for arbitrary solution z;
of (8), a corresponding solution s of (7) exists, so that number of solutions s,z; of (7)(8) is
14+r-1C) which is exponentially number. To decide one plaintext s from 1+n—1C1 of candidates,
7 is required. Therefore, an analysis for only m is invalid, and security of ciphertexts (m,r)
depends on the security of r.

2.Necessity of t.
We suppose that k; is not multiplied by ¢ in (1).
ki=¢; (mod P) (9)
And we consider the security of the proposed scheme in this case. (9) is rewritten as

. kiEpiP+Qz' (mOd N)

227

and if ¢; is moved to the left term, this equation becomes
k; — ¢ =piP (mod N).

Note that o(g;) = o(P*/") is very small compared with P, so that P is revealed from
gcd(k; — ¢i, N) = P by “all-search” for g;.
In case k; is multiplied by ¢, above equation becomes

k;—tg;=p;P (mod N).

Oscar can limit ¢ (mod N) as 0 < t < P, and try ged(k; — t¢i, N) = P or 1 (Oscar must not
know P, but he can tell ged(z, N) = P if it is some very large number.), but its steps is as large
as P. Therefore, t is necessary for the security of the proposed scheme.

3. Analyze k; with L3 algorithm
We suppose that Oscar tries to solve
k;=P;+ ¢t (mod N) (10)

for (P;,t). Where g; is correct(which is occasionally correct by all-search for ¢;) but Oscar does
not know whether ¢; is correct. After (10) is solved, Oscar can solve (1) by solving

P;=p;P (mod N) (11)
where the solution does not exist unless
P;=0 (mod P) (12)

is satisfied.
Oscar can solve (10) for (P;,t) with L3 algorithm. Next, Oscar tries to solve (11). If

P;=k;-t¢g; (mod N) (13)

is considered, there is N — 1 of P; which corresponds to N — 1 of ¢. Therefore, number of pairs
of (P;,t) (whether it equals secret information or not) satisfies (10) is N — 1. But, solution of
(11) does not always exist for all N — 1 pairs of (P;,t), because P; varies ¢; if ¢ varies one (see
equation (13)) and from ged(P, ¢;) = 1, very few pairs of (F;,t) satisfy (12).

Therefore, this analysis is invalid, and analyzing k; with L3 algorithm is not efficient to reveal
the secret information from the public information.

4. Differential attack
We consider equations

ki =p;P +tg; (mod N)
kj = p;P +1tg; (mod N)

and consider a differential

gik; — ¢:k; = (pig; — pi@i)P + t(¢ig; — ¢;¢:;) (mod N)
= (pigj — pig)P (mod N).

Hence, with correct value of ¢; and ¢j, P is revealed by trying ged(g;jk; — ¢ikj, N) = P or 1.
Therefore, P is revealed by all-search analysis for ¢; and ¢; which requires

Umas (14)

of steps maximum. And this shows the security against the analysis for the proposed scheme.

228

5. Setting of Parameters

Considering the security described in this section, an example of optimal parameters in the
proposed scheme are as follows:

e N = 1024bit, P = 768bit, Q = 256bit.
e Pairs of the public key, n = 180.

e Number of keys Alice must choose from n keys, [= 17.

280

Security of the trapdoor, 180+17-1C17 =
® gmar = 2%%(= 6byte), and from (14), security against analysis = 2%.

o o = 2%2(= dbyte).

Size of the public keys, 180 x 1024bit X 2 = 45Kbyte.
e Size of the secret keys, 180 X (6 + 4)byte = 1.8 Kbyte.

And these parameters are used in the computer simulation shown in the next section, adding
to set the size of the plaintext M = 1024bit.

5 Result of a Computer Simulation.

In this section, we show a result of computer simulation. We repeated encryption and decryption
100 times, and measured a running time. Result is an average running time of 100 times
encryption and decryption, where parameters of the proposed scheme is same as that of previous
section. In RSA scheme, we set size of two large primes p = ¢ = 512 bit, so that size of the
plaintext is same as the proposed scheme. And we set size of the encryption key e = 65537,
which is used well in practice, such as SET. We used Chinese remainder theorem in decryption.
And simulation is done on the computer whose CPU is Pentium 200MHz, under OS Linux2.0.0.
with Irgnum calculation package which can used as C++ library.

Encryption | Decryption
Proposed (timey) | 0.0211 sec. | 0.018 sec.
RSA (timep) | 0.0278 sec. | 0.87 sec.
timep [timegy 1.32 48.3
Average running time of 100 times encryption and decryption.

Simulation under above settings showed result that running speed of the proposed scheme
is 1.32 times as fast as RSA scheme in encryption, and 48.3 times as fast as RSA scheme in
decryption.

6 Summary and Conclusion

We proposed a new type of public key cryptosystem and result of computer simulation showed
we have achieved a fast public key cryptosystem.

Encryption of the proposed scheme requires [/ — 1 times multiplication. Let z be bit length
of N, computational complexity of the proposed scheme in encryption is

o(l - z?)

229

and we consider how [increases when z increases. From (2),

(¢maz)' < P

and if gmaz is fixed(in fact, gmq, affects the security of the proposed scheme and must increase at
the increment of N), ! is o(log P). Therefore, computational complexity of the proposed scheme
in encryption is

o(z%)

whose coefficient is small.
Decryption of the proposed scheme looks like linear scheme, so that its computational com-

plexity is
o(z?).

The specific of the proposed scheme is as follows.
e Encryption and decryption are fast.
e Alice’s key choices are required for the security.

e No particular condition for the size of plaintext M, hence extension of the band length
does not occur in encryption and decryption.

o Size of keys are large.

References

[1] A.K.Lenstra, H.W.Lenstra,Jr, and L. Lovasz, “Factoring Polynomials with Rational Coef-
ficients” Mathematische Annalen No.261 pp.515-534, Springer-Verlag, 1982.

[2] H.-W.Lenstra, “Integer Programming with a Fixed Number of Variables” Mathmatics of
Operations Research vol.8, No.4, pp.538-548, November 1983.

[3] R.Kannan, “Improved algorithms for integet programming and related lattice problems” In
Proc.15th ACM Symp. Theory of Computing, pp.193-206, 1983.

[4] C.P.Schnorr and H.H.Horner, “Attacking the Chor-Rivest Cryptosystem by Improved Lat-
tice Reduction” Advances in Cryptology, Proc. EUROCRYPT 95, pp.1-12, Springer-Verlag
LNCS 921, 1995.

230

Efficient Convertible Undeniable Signature

Schemes
(Extended Abstract)

Markus Michels Markus Stadler

Ubilab, UBS
Bahnhofstr. 45
8021 Zurich, Switzerland

Markus.Michels@ubs.con » Markus.StadlerCubs.com

Abstract

Undeniable signatures are a digital signatures which are not universally
verifiable but can only be checked with the signer’s help. However, the
signer cammot deny the validity of a correct signature. An extended con-
cept, convertible undeniable signatures, allows the signer to convert single
undeniable signatures or even the whole scheme into universally verifiable
signatures or into an ordinary digital signature scheme, respectively.

In this paper we propose a new convertible undeniable signature
scheme and provide proofs for all relevant security properties. The scheme

* is based on Schnorr’s signature scheme and it is efficient.

Unlike previous efficient solutions, this new scheme can be used as a
basis for an efficient extensjon to threshold signatures, where the capa-
bility of signing (and of verifying signatures) is shared among n parties
using a ¢ out of n threshold scheme.

1 Introduction

The two most important properties of ordinary digital signatures are non-
repudiation and universal verifiability. Non-repudiation guarantees that a signer
cannot deny his or her commitment to a message or a contract at a later time,
and the property of universal verifiability allows everybody to check the cor-
rectness of a signature. However, for certain applications, universal verifiability
is not required or even not desired. Therefore, the concept of undeniable signa-
tures was introduced by Chaum and van Antwerpen [5]. Undeniable signatures
are like ordinary digital signatures, with the only difference that they are not
universally verifiable. Instead, there exist (often interactive) protocols which
allow the signer to convince a verifier about the validity or invalidity of a sig-
nature. Non-repudiation is still guaranteed, since the signer cannot convince |
the verifier that a correct signature is invalid or that an incorrect signature

231

is valid. Various realizations of undeniable signature schemes have been pro-
posed (see [5, 3]). Some concerns about the security of [5] have been discussed
in [9, 4, 17]. Moreover, a scheme based on fail stop signatures was suggested
[6] and non-interactive undeniable signatures have been introduced [18]. Harn
and Yang extended the concept of undeniable signature schemes to a threshold
model [14]: the capability of the signer is shared among n parties such that a
coalition of at least ¢ parties has to co-operate to sign messages and to verify
signatures. They presented schemes for the cases t = 1 and ¢ = n, however,
the latter was successfully attacked by Landau [19]. Recently, Lin, Wang and
Chang presented a solution that works with any ¢, 1 < t < n [20], but it is
flawed as well, if signers are not assumed to be honest.

An extended concept of undeniable signatures, called convertible undeniable
signatures, was suggested in [2]. With a convertible scheme, the signer can con-
vert undeniable signatures into ordinary, i.e. universally verifiable signatures.
This can be done either selectively for single signatures or totally for the whole
scheme. Several realizations have been proposed: In [2], a secure but inefficient
solution was presented. Practical schemes based on ElGamal signatures {10],
which have been proposed in [2] and [23], were shown to be insecure [22], and
the solution of [22] lacks detailed security proofs. A scheme proposed by van
Heyst and Pedersen [16] can be converted to fail stop signatures, but the key
length is linear in the number of signatures that can be signed. Two convertible
undeniable signature schemes that are secure w.r.t. forgery have been proposed
by Damgard and Pedersen in [8]. These schemes are also based on the ElGamal
signature scheme and on techniques for proving that an encrypted signature
is valid. One of them uses Rabin-encryption [25] and the interactive verifica-
tion protocols can be done efficiently. The drawback is that the extension to a
threshold scheme is hard to obtain, as a suitable composite modulus must be
computed jointly. The second scheme uses ElGamal-encryption, which is some-
what inefficient, as the verification protocol requires several rounds to become
secure. : :

In this paper we present an efficient convertible undeniable signature scheme,
which can be proved secure under reasonable cryptographic assumptions. In
this scheme, the signer cannot only selectively convert valid signatures into
digital signatures, but he or she can also convert any invalid signature into
an universally verifiable statement about this fact. The scheme is based on
Schnorr’s signature scheme [26] and on an efficient zero-knowledge protocol for
proving the equality or inequality of discrete logarithms. Furthermore, we show
how to extend this scheme to a threshold undeniable signature scheme. Very
recently, Gennaro, Krawczyk and Rabin suggested a scheme [13] that is as secure
as RSA with respect to forgery. It provides efficient verification protocols but
it’s less suitable to be a basis of a threshold scheme as a trusted dealer is usually
involved to generate the composite RSA-modulus (see [12] for a threshold RSA-
scheme) 1. , :

Our paper is structured as follows: In Section 2 we describe the model of a
convertible undeniable signature scheme, then we present a building block which

1A way to compute an RSA modulus jointly is suggested in [1], but neither security against
an active attacker nor the use of strong primes is guaranteed.

232

will be used in our protocol. We present our solution in Section 4 and analyze
its security. Based on this solution we suggest a threshold scheme in Section 5.
Further extensions are discussed in Section 6.

2 Model

A convertible undeniable signature scheme consists of the following procedures.

e A probabilistic set-up algorithm Setup which returns the system parame-
ters P.

o A probabilistic key generation algorithm KeyGenp which, on input the
system parameters, returns a key pair (z,y), where = denotes the secret
key and y the public key.

¢ A (possibly probabilistic) signature generation algorithm SigGenp(m, z)
which, on input the secret key = and a message m, returns an undeniable
signature s on m.

e A (possibly interactive) verification protocol Verp(m,s,y,z) between the

~ signer and the verifier. The signer’s input is the secret key z, the message
m and the ‘alleged’ 51gna.ture s, the verifier’s input is m, s and the public
key y. The protocol convinces the verifier whether s is a valid signature
on m or not.

e A (possibly probabilistic) individual receipt generation algorithm
RecIndp(m, s,z) which, on input a message m, an ‘alleged’ signature
s, and the secret key z, returns an individual receipt r which makes it
possible to universally verify whether s is valid or not. A signature can
selectively be converted by issuing r.

e An individual verification algorithm VerIndp(m,s,y,r) which, on input
a message m, an ‘alleged’ signature s, the public key y, and a correct
individual receipt r with respect to s, outputs that the receipt r is invalid
with respect to s or that r is valid w.r.t. s. If the latter is true, it also
outputs whether s is a valid signature on m or not.

® A (possibly probabilistic) universal receipt generation algorithm
RecUnip(z) which, on input the secret key z, returns a universal receipt
R which makes it possible to universally verify all signatures. The scheme
can be totally converted by releasing R.

* A universal verification algorithm VerUnip(m, s,y, R) which, on input of
a message m, an ‘alleged’ signature s, the public key y, and a universal
receipt R, outputs the the receipt R is invalid or not. If the latter is true
Is also outputs, whether s is either a valid or a invalid signature on s.

The following statements must hold for a secure undeniable signature scheme:

233

o Unforgeability: The signature scheme is existentially unforgeable under
an adaptive attack, i.e., there is no efficient algorithm that returns a valid
signature s on an arbitrary message m with non-negligible probability,
even if a polynomial number of valid signatures on chosen messages are
given.

o Invisibility: There exists no efficient algorithm which, on input the public

- key y, a message m, and an ‘alleged’ signature s, can decide with non-

negligible probability better than guessing whether s is either valid or
not. : :

o Completeness and soundness of verification: The verification algorithms
Ver, Verind and VerUni are complete and sound, where completeness
means that valid (invalid) signatures can always be proved valid (in-
valid), and soundness means that no valid (invalid) signature can be
proved invalid (valid). Indirectly, this must also hold for the algorithms
RecInd, RecUni.

o Non-transferability: A verifier participating in an execution of the in-
teractive verification Ver of a signature does not obtain information that
could be used to convince a third party about the correctness of a signa-
ture (although this verifier knows whether the given signature is valid or
not). '

3 Preliminaries and Building Blocks

In this section we first describe briefly the notation we use. Theén we present
an efficient interactive zero-knowledge proof for showing that two discrete log-
arithms are either equal or not. This protocol will be used later in our scheme,
but is of independent interest. Such a proof is also called a biproof [11], because
it proves that the input word belongs to one of two languages. A less efficient
bit-wise proof for this problem has been suggested in [11].

3.1 Notations

Z denotes the ring of integers modulo ¢ and Z; denotes the multiplicative group
modulo p. We write @ €g A to indicate that the value a is chosen randomly
from the set A according to the uniform distribution.

In the sequel, we will make use of a cyclic group G = {a) of prime order g,
in which computing discrete logarithms is infeasible. For instance, G could be
constructed as a subgroup of the group Zy for a suitable prime with qlip—-1),
or G could be an elliptic curve.

We also assume collision resistant hash functions #, : {0,1}* x G = {0,1}*
(with £ = O(log, ¢), in a practical realization e.g. £ =~ 160), the hash function
family #, : G* — {0,1}* and H¢ : {0,1}* = G. If G C Z;, the latter could
for instance be constructed by first hashing to a string of length log, p and then
computing the ((p — 1)/¢)-th power of this value.

234

3.2 Proving the equality or inequality of two discrete log-
arithms

An important component of our realization of a convertible iindeniable signature
scheme is an efficient protocol that allows a prover to convince a verifier about
the equality or inequality of two discrete logarithms, such that no additional
information about these logarithms is leaked. More precisely, assume the prover
knows the discrete logarithm z of y = o and wants to allow the verifier to decide
whether logg 2z = log,, y for given group elements § and 2. Therefore, the prover
and the verifier execute the following protocol.

1. The verifier chooses random values u,v € Zg, computes a := o*y, and
sends a to the prover.

2. The prover chooses random values k, k, w € Z,, computes ry := o, rg ==
B, 7o := ¥, and s := B*, and sends rq, rg, Ta, '3, and w to the verifier.

3. The verifier opens his commitment ¢ by sending v and v to the prover.

4. If @ # a"y” the prover halts, otherwise he computes s := k — (v + w)z
(mod ¢), §:=k— (v+ w)k (mod g) and sends s and § to the verifier.

5. The verifier first checks whether a®y't¥ = r,, o®rit® = 7, and
o r;'*'”’ = f'g and then concludes:

if B°2¥*¥ =rp then logsz=log,y
if 8*2"+" £ rp then logsz # log, ¥

The following theorem can be proved.

Theorem 1 The above protocol is complete and sound. It is zero-knowledge
under the assumption that there exists no algorithm running in expected poly-
nomial time which decides with non-negligible probability better than guessing
whether two discrete logarithms are equal.

Proof (Sketch): The completeness of the protocol is obvious because an honest
prover can always convince an honest verifier of the equality or inequality of
the two discrete logarithms. To prove the soundness property, it is important
to note that the commitment a sent by the verifier in the first message does not
reveal any information (in an information-theoretic sense) about the value v and
that therefore the “challenge” v + w is truly random for the prover. Based on
this observation it can easily be shown that successful cheating is only possible
with negligible probability.

To prove the zero-knowledge property of the protocol, we show how to construct
a simulator that returns a protocol transcript with a probability distribution in-
distinguishable from the distribution of a verifier’s protocol view. The simulator
uses the verifier as a black-box, i.e., it works independently from the verifier’s
strategy.

1. The verifier’s algorithm is used to compute the commitment a.

235

2. The simulator_randomly chooses s, §, w, and ¢ € Zy and computes rq :=
a’y’, fo = a’rS, and 75 := F°r§. The value rg is computed as 5°2° or
chosen randomly from G\{8*z°}, dependmg on which protocol outcome
should be simulated.

3. The verifier’s algorithm is used to compute u and v on input the values
Ta, T8, Ta, 74, and w.

4. If a # a%y' the simulator returns as protocol transcript the values rq,
g, Ta, 73, w, and halt. Otherwise, the simulator repeats steps 2 and 3
until the commitment a is correctly opened with values v/ and v'; step 2
is modified such that ¢ is not chosen randomly but set to ¢ = v + w.

5. If the simulator finally stops and if u = o') it returns as transcript the
values 7o, Tg, fa, g, w, s and §. If u # v’ then the discrete logarithm
z of y to base a can bé extracted and the simulator returns as transcript
the value of z.

It can easily be seen that the expected number of repetitions of steps 2 and 3
is constant and that therefore the simulator runs in expected polynomial time.
Let us now explain briefly why the output of the simulator is computationally
indistinguishable from a protocol view: . '

o the probability that a halt occurs is the same as in a protocol execution.

e the probability that the simulator returns z, the discrete logarithm of
y to the base a, is negligible because of the assumption (otherwise, the
simulator could be used to test the equality of discrete logarithms with
non-negligible probability).

o all values, except 7, are distributed according to the same distribution in
the simulator’s output and the protocol view, and the two distributions

~of 7 can distinguished only by deciding whether log, o equals logg g,
which is not possible according to the assumption.

]
To obtain a designated verifier proof [18], the commitment a must be com-
puted as a := a%y¥,, where yy is the verifier’s public key and w = #10(e, ,
B, z, Ta, T8, Ta, ¥, a,yv). This proof is non-interactive, but as the verifier can
generate this proof as well, it’s not a receipt.
The protocol can also easﬂy be turned into a non-interactive argument by
omitting the commitment a, setting w to 0 and computing v as v = Hg(a, ¥, B,
2, Ta, T8, Fa, T8).

4 New convertible signature scheme

We describe our scheme and analyze its security.

236

4.1

Basic scheme

The protocol can be described as follows:

1.
2.

4.2

Set up: The system parameters are G, ¢, ¢, Hy, and Hg.

Key generation: Each user picks at random two numbers z; and x5 from
Z, as secret keys and computes the public keys y; := a®* and y; 1= o2,

. Signature generation: A message m is signed in the following way:

(a) k €r Zg, r = o, 7 := Hg(r)*
(b) ¢ :=He(m,7)
(c) s:=k~cz1 (mod g)

The resulting signature on m is the pair (7, s).

. Interactive verification: The signature can be verified or denied by inter-

actively proving the equality or inequa.lity of the discrete logarithms of 7
and y, to the bases Hg(o® yu‘ m.f) and «, respectively, using the inter-
active protocol described in section 3.2. Alternatively, the non-interactive

designated verifier proof outlined in section 3.2 can be used.

. Individual receipt generation: To selectively convert a signature, this

proof is turned into an non-interactive argument using the non-interactive
argument protocol described in section 3.2. This argument is the individ-
ual receipt. Note that this also allows to make it publicly verlﬁable that
a given signature is mvalzd

. Individual verification: By checking the validity of the individual receipt,

a verifier can see whether the related signature is either valid or invalid.

. Universal receipt generation: In order to totally convert all undeniable

signatures into digital signatures, the secret key z5 is published as univer-
sal receipt.

. Universal verification: The verifier checks whether

He(m, 1')),1;2 =F

He(eyy
holds.

Efficiency

We analyse the efficiency of our scheme, where G is chosen as the multiplica-
tive subgroup of order ¢ of Z; and ¢ is small. Thus in general we have short
exponents. Only for the computation of H¢ we need a full exponentiation, as
we exponentiate an output of a hash function & : {0,1}* — Z, with (p — 1)/q
to get an element in G. Let M;(i) denote the number of |p|-bit multiplications

that are required to compute i cascaded exponentiations of the form H

d]
j=1 J

237

Operations

Signer

Verifier

Signature generation
Interactive verification
Selective conversion
Individual verification

2-Mq(1) + Mp-q(1)
5-Mg(1) + Mp-q(1)
5-Mq(1) + Mp-o(1)

4 Mo(2) + Mr—o(1)

4-Mqg(2) + Mp—q(1)

Total conversion -
Universal verification -

Mo(1) + MQ(_Z) + Mp_q(1)

Figure 1: Costs for operations

where [is the length of the exponents. Let P = |p| and Q = |g|. Figure 1 shows
the costs for the different operatlons

Let us illustrate the costs in an example with P Ip| = 1024 and

= |gq| = 256. Using methods of [29], we have Mp(1) = 308,Mq(2) = 373

multiplications for an exponentiation with one and two 256-bit exponents, re-

spectively and Mp_gq(1) = 902 multiplications for an exponentiation with one

768-bit exponent. - The costs for the different operations in thlS example are

described in Figure 2.

Operations Signer | Verifier
Signature generation 1518 -
Interactive verification | 2442 2394
Selective conversion 2442 -
Individual verification - 2394
Total conversion 0 -
Universal verification - 1583

Figure 2: Costs in number of 1024-bit multiplications

Even better results can be achieved if G is chosen to be an elliptic curve over a
finite field.

4.3 Security analysis

We distinguish the analysis in the parts unforgeability, invisibility, untransfer-
ability and completeness & soundness of verification.

Unforgeability

Theorem 2 Under the assumption that the hash functions H, and Hg are
truly random functions, forging valid signatures is equivalent to forging Schnorr
signatures.

Proof (Sketch): In the converted scheme, with known z,, let the function
Hn 2 {0,1}* x G — {0,1}* be defined as

Hn(m,r) := He(m, Ha(r)*?).

The converted undeniable signature scheme is equivalent to a Schnorr signature
scheme using the hash function #y. But because #y is indistinguishable from

238

a truly random function (the only differences are possible collisions of #), the
converted signature scheme is secure. As a consequence, also the non-converted
scheme has to be secure. o

Invisibility
To prove the invisibility of the scheme prior to conversion, we need an additional
assumption, the Decision Diffie-Hellman assumption. We first define the two sets

DH = {(o,9,8,2) € G* | log,y =logy z}

NDH = {(e,4,6,2) € G* | log, y # logs 2}
of Diffie-Hellman and non-Diffie-Hellman 4-tuples.

Assumption For all probabilistic polynomial time algorithms A : G* — {0, 1},
the two probability distributions

Probreppu [A(T) =1] and Probrezyou [A(T) =1]

are computationally indistinguishable (the probabilities are taken over the ran-
dom coin tosses of .4 and over the random choices from DH and N'DH, respec-
tively).

Theorem 3 Provided that the assumption holds and that the the hash function
#g can’t be distinguished from a random function, verifying a given signature
without the assistance of the signer can be done only with negligible probability, -
even if a polynomial number of valid signatures is known.

Proof (Sketch): The basic idea is to transform an instance (a,y,8,z) of the
above problem into an instance of the signature scheme (we assume that the
instance (o, y, 8, z) is already randomized, e.g. see [28]). Concretely, let a be the
generator, let y be y,, and let y; = o for a randomly chosen z;. Furthermore,
we simulate the hash function #¢ to be able to generate signatures. To generate
a correct signature, we proceed as described, except that we set Hg(r) = o
and 7 = y for a randomly chosen t (this guarantees that the signature is
correct, even if we don’t know z;). For the signature whose verification is to
be equivalent to solving the above problem, let #H¢g(r) = f and ¥ = z: this
signature is only valid if the above 4-tuple is a Diffie-Hellman tuple. Therefore,
if there was any efficient algorithm which can decide (better than guessing)
whether this signature is valid, such an algorithm could also be used to solve
the Decision-Diffie-Hellman problem, but this would lead to a contradiction.

Non-transferability

Non-transferability follows directly from the zero-knowledge property of the
interactive protocol for proving the equality /inequality of discrete logarithm.

239

Soundness & completeness of verification

Before conversion, these properties follow from the soundness and the complete-
ness property of the used zero-knowledge protocols. In the selectively converted
version, these properties are inherited because of the impossibility to issue wrong
receipts provided the used hash function is collision resistant.

5 Robust convertible undeniable threshold sig-
nature scheme

Using standard techniques for verifiable sharing of discrete logarithms [23] and
methods from secure multi-party computations, our basic convertible undeni-
able signature scheme presented in Section 4 can be adapted for the threshold
scenario.

5.1 Model

In a convertible undeniable threshold signature scheme there is a group of n
signers such that any coalition of at least ¢ signers can jointly sign a message.

The communication model is as follows: During the signature generation,
it is assumed that the signers can broadcast messages to each other and the
signers check proofs of other signers. During the interactive verification each
signer has a channel to communicate to the verifier.

The threshold scheme consists of the same procedures as listed in section
2, however, the key generation algorithm must output shares of the secret key
for each signer such that only at least ¢ signer are able to sign a document on
behalf of the group, and the other algorithms should be adopted accordingly.

With regard to security against dishonest signers, we have to distinguish
between passive and active cheaters. Passive cheaters follow the protocols hon-
estly but try to gain additional knowledge by pooling their information, while
active cheaters can even deny service or send wrong values.

5.2 New scheme

We outline the robust convertible undeniable threshold signature scheme, based
on the scheme given in the previous section.

It is assumed that x; and z, are shared among n provers using a verifiable
t out of n threshold secret sharing scheme (for details see [27, 23]). A share of
signer ¢ of a variable or value a is denoted Share;(a). Given at least ¢ distinct
(correct) shares, the value of a can be reconstructed using Lagrange interpola-
tion (see [23]). We also assume that shadows of the form o Sha7€i(#1) are publicly
known. : :
A message m is signed in the following way by d signers (t < d < n):

240

1. The signers jointly compute r := oF in a distributed manner. Each signer

i gets a verifiable share Share;(k). A shadow aShareik) is revealed and
publicly known. .

2. Each signer computes f; := %G(T)Share.-(z,) and proves interactively and
in zero-knowledge to all other signers that this is correctly done. This
requires only a simple zero knowledge proofs of equality of discrete log-
arithms. If at least t signers are honest, each of them can compute
= He(r)®* by combining the values #; of the honest signers.

3. Each signer computes ¢ := H(m, 7).

4. Signer ¢ computes Share;(s) := Share;(k) — ¢ - Share;(z1) (mod ¢) and
broadcasts this value to all other signers. These shares are checked using
the revealed shadows. If at least ¢ signers are honest, the value s can be
reconstructed, which is then sent to the verifier.

The verification protocols, as well as the procedures for generating receipts, can
be adapted from the basic protocols described in Section 4 in an analogous way.

5.3 Security analysis

For an outsider attacker the security analysis does not differ from the analysis
given in the previous section.

As d signers (t < d < n) sign a message, we have to assume that there are
at most ¢t — 1 dishonest signers and among those, there must not be more than
min(d —t,t — 1) actively cheating signers. We further have to assume that the
verifier has no unconditional trust to any signer.

e Key Generation: It was already shown that any group of { — 1 mem-
bers does not obtain any knowledge concerning the secret keys and it’s
impossible to cheat for signers during the key generation protocol [23].

o Unforgeability: The dishonest signer could pick a document m and try to
get a threshold signature on it, although the honest signers are not aware
of this document (e.g. they might think to sign another document m').
Such an attack was successful in some multi party signature schemes as
pointed out in [21]. Here, however, such an attack is not successful. It
is impossible to transform a partial signature of a honest signer on m’ to
a partial signature on m, as r can’t be fully determined by the dishonest
signer and r and m’ are both input of the hash function.

o Inuisibility: Invisibility still holds even if ¢ — 1 signers send the knowledge
they gained during signature generation to the verifier provided the verifier
does not trust any signer unconditionally. In fact, r is known by the verifier
anyway, but some %G(r)Sham‘(”2) and the partial signatures can be send
him as extra knowledge. However, the relation ¥ = Hg(r)*? can’t be
proved by ¢ — 1 signers. The partial signatures are useless as well, as they
can be simulated by one signer.

241

6

e Non-transferability: As the interactive verification is zero-knowledge and
the information from selective conversion for given signatures does not
help to verify another alleged signature, non-transferability holds.

o Robustness: As only up to min(d —t,t — 1) signers are totally controlled
by the attacker, the signature can always be generated by the ¢ remaining
signers, that are either honest or only passively cheating.

Further extensions

Clearly, the security model can be somewhat strengthend by updating the in-
dividual shared parameters from time to time without changing the public key
[15]. Furthermore, the threshold schemes can be transformed into shared sig-
nature schemes with arbitrary access structure just by substltutmg the used
secret sharmg scheme. It’s also possible to share the verifier by using ideas pro-
posed in [23, 18] or to use publicly verifiable secret sharing [28] instead of the
non-publicly verifiable sharing scheme.

References

1
(2]
(3]
[4]
5]
(€]

7l
(8]
9]
[10]

[11]

D.Boneh, M.Franklin, ”Efficient generation of shared RSA keys”, LNCS Proc.

Crypto’97, Springer Verlag, (1997).

J.Boyar, D.Chaum, I.Damgard, T.Pedersen, ”Convertible undeniable signa-
es”, LNCS 537, Proc. Crypto ’90, Springer Verlag, (1991), pp. 189-205.

D.Chaum, "Zero-knowledge undeniable signatures”, LNCS 473, Proc.
Eurocrypt 90, Springer Verlag, (1991), pp. 458—464.

D.Chaum, "Some weakness of “Weaknesses of Undeniable Signatures””, LNCS
547, Proc. Eurocrypt 91, Springer Verlag, (1992), pp. 554-556.

D.Chaum, H. van Antwerpen, ”Undeniable Signatures”, LNCS 435, Proc.
Crypto '89, Springer Verlag, (1990), pp. 212-216.

D.Chaum, E. van Heyst, B.Pfitzmann, ”Cryptographically strong undeniable
signatures, unconditionally secure for the signer”, LNCS 576, Proc. Crypto’9l,
(1992), Dp. 470-484.

D.Chaum, T.Pedersen, "Wallet databases with observers”, LNCS 740, Proc.
Crypto’92, (1993), pp. 89 - 105.

I.Damgard, T.Pedersen, "New convertible undeniable signature schemes”, LNCS
1070, Proc. Eurocrypt’96, Springer Verlag, (1996), pp. 372-386.

Y.Desmedt, M. Yung, ”Weaknesses of undeniable signature schemes”, LNCS 547,
Proc. Eurocrypt 91, Springer Verlag, (1992), pp. 205-220.

T. ElGamal, "A public key cryptosystem and a signature scheme based on dis-
crete logarithms”, LNCS 196, Proc. Crypto’4, (1985), pp. 10-18.

A.Fujioka, T.Okamoto, K.Ohta, ”Interactive Bi-Proof Systems and undeniable
signature schemes”, LNCS 547, Proc. Eurocrypt '91, Springer Verlag, (1992),
Pp. 243-256.))

242

[12]

[13]

[14]

[15]

16]
(17]

(18]

(19]

[20]

[21]

[22]

[23]
[24]

28]

(26]
[27]
(28]

29]

R.Gennaro, S.Jarecki, H.Krawczyk, T.Rabin, "Robust and efficient sharing
of RSA functions”, LNCS 1109, Proc. Crypto’96, Springer Verlag, (1996),
pp. 157-172.

R.Gennaro, H.Krawczyk, T.Rabin, "RSA-based undeniable signatures®, LNCS,
Proc. Crypto’97, Springer Verlag, (1997).

L.Harn, S.Yang ” Group-oriented undeniable signature schemes without the as-
sistance of a mutually trusted party”, LNCS 718, Proc. Asiacrypt’92, Springer
Verlag, (1993), pp. 133-142.

A Herzberg, S.Jarecki, H.Krawczyk, M.Yung, ”Proactive secret sharing or: How
to cope with perpetual leakage”, LNCS 963, Proc. Crypto’95, Springer Verlag,
(1995), pp. 339-352.

E.van Heyst, T.Pedersen, "How to make efficient fail stop signatures”, LNCS
658, Proc. Eurocrypt’92, Springer Verlag, (1993), pp. 366-377.

M.Jakobsson, ”Blackmailing using undeniable signatures”, LNCS 950, Proc Eu-
rocrypt’94, Springer Verlag, (1995), pp. 425-427.

M.Jakobsson, K.Sako, R.Impagliazzo, "Designated verifier proofs and their
applications”, LNCS 1070, Proc. Eurocrypt’96, Springer Verlag, (1996),
pp. 143-154.

S.Landau, ®Weaknesses in some threshold cryptosystems”, LNCS 1109, Proc.
Crypto’96, Springer Verlag, (1996), pp. 74-83.

C.-H.Lin, C.-T.Wang, C-C.Chang, ”A group oriented (t,n) undeniable signa.tﬁré

scheme without trusted center”, LNCS 1172, Information Security and Privacy,
ACISP’96, Springer Verlag, (1996), pp. 266-274.

M.Michels, P.Horster, ”On the risk of disruption in several multiparty signature
schemes”, LNCS 1163, Proc. Asiacrypt 96, Springer Verlag, (1996), pp. 334-345.

M.Michels, H.Petersen, P.Horster, ”Breaking and repairing a convertible unde-
niable signature scheme”, Proc. 3rd ACM Conference on Computer and Com—
munications Security, ACM Press, (1996), pp. 148-152.

T.P.Pedersen, ”Distributed provers with applications to undeniable signatures”,
LNCS 547, Proc. Eurocrypt *91, Springer Verlag, (1992), pp. 221-242.

D.Pointcheval, J.Stern, ”Security proofs for signature schemes”, LNCS 1070,
Proc. Eurocrypt’96, Springer Verlag, (1996), pp. 387-398.

M.O.Rabin, "Digitalized signatures and public-key functions as intractable as
factorization”, MIT/LCS/TR-212, MIT Lab. for Computer Science, Cambridge,
Mass., 1979.

C.P.Schnorr, ”Efficient signature generation for smart cards”, Journal of Cryp-
tology, Vol. 4, (1991), pp. 161-174.

A.Shamir, "How to share a secret”, Communications of the ACM, Vol.22, (1979),
pp. 612-613.

M.Stadler, "Publicly verifiable secret sharing”, LNCS 1070, Proc. Eurocrypt’96,
Springer Verlag, (1996), pp. 190-199.

S.-M.Yen, C.-S.Laih, *The fast cascade exponentiation algorithm and its ap-
plications on cryptography”, LNCS 718, Proc. Asiacrypt’92, Springer Verlag,
(1993), pp. 447-456.

243

One-Response Off-Line Digital Coins

Khanh Quoc Nguyen, Yi Mu, and Vijay Varadharajan
Distributed System and Network Security Research Unit
Department of Computing University of Western Sydney, Nepean,
Kingswood, NSW 2747, Australia

Email: {qnguyen,yimu,vijay }@st.nepena.uws.edu.aun

Abstract

Current off-line electronic cash systems are often too complex to implement. In this
paper, we propose an efficient off-line digital cash payment system that still maintains
basic security features such as double-spending detection and client anonymity. Using
a one-way hash function chain, our method verifies the clients to perform one single
online computation (response) for the whole payment.

Keywords: Secure Electronic Commérce, Cryptography

1 Introduction

Off-line digital cash systems are more preferable than on-line cash systems, since in off-
line digital cash systems banks do not need to be involved in payment processes. There
have always been two major concerns for off-line systems: double-spending and customer’s
privacy. In particilar, double-spending is a serious threat for off-line schemes. Customer’s
privacy protection, including untraceability of transactions and anonymity of customer, is
the other very important requirement for any electronic payment scheme.

Current off-line electronic cash systems [3, 1, 4] tend to provide double-spending de-
tection, client anonymity, and transaction untraceability. However, as there is always
a trade-off between double-spending detection and transaction untraceability, it is often
complex to be realized at a low cost. Even in the most efficient systems[1, 4], many discrete
exponential computations are required for each digital monetary unit'in order to achieve
the untraceability. To design an electronic payment system that allows small amount of
payment, heavy use of discrete exponential computation must be avoided. In fact, this
requirement makes all current off-line cash systems economically infeasible.

In this paper, we propose an efficient approach to off-line digital cash schemes that
makes small payment amounts possible. Our scheme provides client anonymity and
double-spending detection. In our proposal, we use one-way hashing functions to create
some links between coins spent in the same transaction. This method requires the client to
perform only one major computation and there are no discrete exponential computations
in the payment phase. This feature leads to a significant improvement in computational
efficiency in contrast to all previously proposed schemes. '

244

The remainder of this paper is organised as follows. Section 2 gives the cryptographic
background and introduces Schnorr’s signature scheme. The one-time feature of Schnorr’s
scheme forms the main basis of our cash protocol. In section 3, we describe the working
principles of our cash scheme. Section 4 discusses various security and efficiency features
of the our protocol; we also includes some comparisons between our scheme and previous
works. Finally Section 5 concludes our paper.

2 Schnorr’s one-time signature scheme

The security of Schnorr’s signature scheme[5] depends on the difficulty of calculating dis-
crete logarithms. Users in the system can share a random number g and two prime
numbers, p and ¢ such that ¢ is a prime factorof p—~ 1, g # 1 and ¢? = 1 mod p.

To generate a particular pair of private/public key, a customer (say, Alice) chooses a
random number s as her private key, 0 < s < ¢. Alice then computes her public key v as:

v:i=¢"°modp

To sign a message m, Alice picks a random number r € Z7 and does the following
computations:
z:=¢" mod p
¢ := h(m||z)
y = (r -+ sc) mod ¢
where h(.) is a suitable collision-free one-way hash function. The signature on the message
m is the pair (¢, y). To verify the signature, Bob checks:
T = g¥v° mod p
and tests if ¢ is equal to h(m||z). If the test is OK, the signature is valid.

The value r must be treated as one-time number. It must not be used more than once
to generate different signatures. If Alice has used r to sign two different messages m and
m', then one has two signatures (c,y) and (¢/,y'). With these two signatures, one can
compute Alice’s private key s as follows: k

y——y’) _ ((r+sc) - (r+sc’))
c—c’ c—c
Schnorr’s scheme allows most of the computation for signature generation to be com-

pleted independent of the message being signed. This forms an important feature in the
efficiency of our scheme.

s=(mod ¢

3 Our off-line Payment Scheme

In our system, there are three main players, the bank, clients and vendors. We denote the
bank by B, a generic vendor by V and a generic client by C. We assume that each coin

245

in this scheme represents a monetary unit. The face value of each coin is decided by the
bank. We denote that a coin with a face value ¢; as C;. We also assume that the bank
has a RSA public/secret key (e, d) with the composite modulus » is a product of two large
prime numbers, ¢;,¢q, a number g such that ¢? = 1 mod p and ged(g — 1,n) = 1. The
values of g, p, ¢, n, and e are public information.

Also to simplify our presentation, in this section only, we use “ = ” to represent a

computation; “ == " to represent a comparison and “ = ” to denote a mathematical
transformation. Transformations are only used to give the readers a clearer picture of our
protocol, they are not carried out by any respective party.

3.1 Account’s Opening Phase

When C wishes to open an account at B, after identifying himself to B, C uses a zero-
knowledge process to obtain a blind-signature from B on h(g” mod p) as (h(g¥))d mod n.
U is constructed as U = I||k (0 < U < q) , where || denotes a concatenation of bits, k is
a random number, and 7 is the client identity registered with the bank (also referred as
the client’s bank account number). The bank should not have any knowledge about the
value of k and consequently the value of U. There have been several such zero-knowledge
processes described in literatures; see for instance[8, 6].

The length of I and k should be fixed, at least 80 bits each, so that given U, it is
feasible to obtain I. The zero knowledge proof also ensures that the order of I and %
cannot change. After the account’s opening phase, the client has an anonymous bank
certificate Cert as (h(gU))d. This certificate would remain anonymous as long as nobody
is able to compute U. Extracting U from Cert is infeasible unless the client double-spends
under the discrete logarithms assumption (see section 4 for further discussions). After the
account’s opening process, C stores Cert and g¢c = gV mod p.

3.2 Withdrawal Phase

Before withdrawing any money from the bank, the client C proves his ownership of I to B.
If the client wishes to withdraw n coins, he chooses a random number ¢, and computes
¢; = h(ci41) for Vi € {1,...,n — 1}. For each ¢;, C uses a blind signature technique [2] to
withdraw an anonymous coin from B using the following protocol (see Figure 1):

1. C generates a random number z;, computing: z} = ¢% mod p, m; = h(ci||z’;).

2. C then uses blind signature technique [2] to obtain a bank signature on m; by choosing
a blind factor r; and sending t; = r{ - m; mod n to B. B signs the value of ¢; and
return the signature as t;. The client then removes the blind factor r; to obtain the
bank blind signature m! = t!/r; = m¢.

For each signature, the bank deducts the client’s account by an equivalent value of
a coin. After the withdrawal, C has each coin C; with a face value of ¢; in the form of
[h(c,'||:z::-)]d mod n. It is unforgeable unless the factorisation of n is known[3]. For each
coin Cj, C stores [¢;, zi, z}, m].

246

c B
z;, 1 € Z
:v:- = g% mod p
m; = h(ci||’;)
t;=rf{-m; mod n

t'; =t? mod n

m'; = t’,-/(r,-) = Tnfl mod n
re __

m'; == m; mod n

Figure 1: Illustration of the withdrawal protocol.

3.3 Payment Phase

When the client wants to spend the coin chain C1,Cj,...,C, to V, he must spend them
in the order C},Cy,...,C,.

Without the loss of generality, we assume that C has already spent all the coins
Co,Ci,...,C;~1 in some previous payments. Now if C wishes to pay some coins to V,
C must send the coins to V in the exact sequence Cj,Ciyq,-+,Cj,- -+ according to the
following process:

e For the first coin C; (see also Figure 2):

c V
a€Z

pi

b= (z; — Ua) mod ¢

Cert,gc,bci,zl,m! .
4

h(gc) == Cert®* mod n
h(cillz}) == m!° mod n
989" == <! mod p

Figure 2: Illustration of the payment protocol for the first coin.

1. V generates a random challenge a and sends it to C. This challenge should
be unique for each transaction. For example, it can be computed as a =
h(V||Date||Time).

2. C computes the response b = z; — Ua mod ¢ for the challenge a and sends it
along with (Cert, gc, b, c;, z}, m!) to V. The response b is also considered as
Schnorr’s one-time signature on the message a, where z; is one-time material.

V accepts the coin if and only if Cert and m! are valid bank signatures on gc¢, h(c;||z})
respectively and g‘C‘.gb ==z’ mod p '

247

e For every coin Cj, thereafter (see also Figure 3):

c 1%

g}
Cy4T4 ,mj

m'; == h(cjllg™)
h(¢;) == ¢j—1

Figure 3: Illustration of the payment protocol.

C sends [z;,¢;,mf] to V. V accepts the coin C; if and only if h(c;) = ¢j1 (where
c;j—1 obtained from the previous coin) and m/ is a valid bank signature on h(c;||g"7).

For the sake of convenience, let us name the first coin C; as signed coin and all the other
coins C; as normal coins.

3.4 Deposit Phase

In deposit phase, V deposits all the received coins at B by sending [Cert, gc, a,b, ¢;, z}, m]
for each signed coin and [Cj,a:j,m;-] for each normal coin. B goes through exactly the
same verification process as V did in the payment phase. If everything is OK, B pays V
an equivalent amount of money and stores [a, b, ¢;] for the first coin, [¢;, z;] for each other
coin in its coin database.

4 Discussion

In this section, we will closely examine security and efficiency features of the system,
including double-spending detection, client anonymity, and efficiency.

4.1 Double Spending

Double-spending occurs when C double spends some coins in the hope that B cannot detect
the identity. In our protocol, double-spending is detected as follows: ‘

Proposition 1 If the coin C; is spent in a transaction T as a normal coin, then the coin
Ci—1 is spentin T.

Proof: Due to the nature of our scheme, when C; is spent in 7 and C;_; is not spent in
T, C; must be the first coin spent in the transaction, i.e. Cj is a signed coin, but not a
normal coin. Therefore, if C; is spent as a normal coin in a transaction, then C;_; is also
spent in the same transaction.

248

Definition 1 The coin C; is called the first double-spent coin if C; is the coin with the
the smallest subscript i among double-spent coins.

Proposition 2 The first double-spent coin C; must be spent as a signed coin in at least
one transaction.

Proof: If C; was spent as a normal coin in two transactions, 7; and 7z, according to
Proposition 1, C;_; was also spent in both transactions, i.e. C;_; was double spent. This
contradicts the assumption, in that C; is the double-spent coin with the smallest subscript.
Hence, C; cannot be spent as a normal coin in two transactions. In the other words, C; is
spent as a signed coin at least once.

When C double spent some coins, for the first double-spent coin Cj, it must be a signed
coin in at least one transaction. So there are only two possibilities: C; is spent as either a
signed coin in the both transactions or as a signed coin in one transaction and as a normal
coin in another transaction.

e Signed-Signed coin: C spends C; as a signed coin twice, i.e. for two different chal-
lenges a and o, B therefore has b = z; — Ua-(mod ¢) and b’ = z; — Ud’ (mod g¢).
B can easily find U by computing;:

b-?o

a'—a

U=

mod ¢

e Signed-Normal coin: C spends C; twice, once as a normal coin and the other as
a signed coin. B therefore has @ and z; — Ua from the signed coin and z; from the
normal coin. These information are sufficient to compute U. .

So in either case, the value U can be computed. After obtaining U, B extracts I and
matches it with the client’s ID stored in its database. Once, a match is found, B asks C to
reveal the value U incorporated in his Cert. If this value matches the value U obtained by
B from the first double-spent coin, C must have double spent the same coin. The evidence
is undeniable because U is client’s secret information, which is infeasible for anyone else
to compute unless the client had double spent a coin.

4.2 Anonymity

Client anonymity is protected unconditionally in our protocol. The zero-knowledge process
used in the account’s opening phase completely hides the identity of the client. The bank
will not be able to link Cert to C’s ID, once Cert is issued. On the other hands, our
coins are blindly signed by the bank so the bank cannot trace any particular coin to any
particular client.

During the payment process, the client only has to show Cert, which is an anonymous
certificate and reveals z; — Ua (mod g) for each signed coin and z; for each normal coin.
For two different coins, as their corresponding (z;,%;) are chosen at random, they are
different and unlinkable. Having only a, B cannot obtain U from z; — Ua (mod ¢) (since
z; is chosen at random).

249

4.3 Efficiency

The account’s opening phase is a one-off process, so eventhough the zero-knowledge process
is inefficient, it will not affect the efficiency of our system for any transaction later on.

Our withdrawal phase is very efficient. To withdraw a coin, ignoring the number of
hash operations, C only has to compute two exponentiations. This is computationally
more efficient than all current off-line electronic cash schemes. The number of discrete
exponentiations required in Chaum’s[3], Ferguson’s[4], Brands’[1] protocols, are forty, sev-
enteen, and ten respectively. In contrast to these schemes, our protocol needs only two
multiplication operations.

In our payment protocol, for the whole transaction, the client only has to compute a
single response i.e. b = z; — Ua mod g. This is far more efficient than all known off-line
electronic cash schemes to-date, especially as the response message does not involve any
discrete exponential computation. Moreover, the vendor, in the payment phase, does not
need to perform any complicated verification. In fact, the vendor only has to verify one
RSA signature per coin plus a certification Cert and a Schnorr’s one-time signature for
each transaction. - o

Hence our protocol is much more efficient than other existing electronic cash schemes
such as those in {3, 1, 4, 8].

4.4 Other features

Coin Forgery Forging our coins is equivalent to creating (z,k(z)¢ mod n). This is
proved infeasible unless the factorization of n is known.[3] As the factorization of n is only
known to B, forging our electronic coins is infeasible for any other party.

Framing To frame a pa,rticﬁlar client C, B needs U which is (provably) unobtainable
unless C double spends.

Consider the case where clients and vendors collude to double-spend some coins
without being detected by the bank. It is not possible in our scheme as the vendor must
show the anonymous certificate of the client (Cert) to the bank in the deposit phase.

5 Conclusion

In this paper, we have proposed an efficient off-line digital coin system. Our method uses
one-way hash chain to reduce client’s computations to a simple calculation per transaction.
This make our scheme a practical proposition.

We would like to distinguish our work from the scheme proposed in [7] that used a
similar approach which requires only one response from the client for each payment. It
is noted that the scheme[7] requires the vendor to sign next unspent sub-coin-chain; this
allows the second vendor to know who is the first vendor. Moreover, in that system, forging

250

a coin is only equivalent to breaking a one-way hash function; whereas in our system, it
is equivalent to breaking the RSA scheme.

Acknowledgement: We would like to thanks anonymous referees for their comments
to improve the representation of this paper and the necessary bit-length of U.

References

[1] S.Brands, “ Untraceable off-line cash in wallet with observers”, Advances of Cryptol-
ogy - CRYPTO ’98 Proceedings, Springer-Verlag,1994, pp.302-318.

[2] D.Chaum, “ Security without Identification: Transaction systems to make Big
Brother obsolete,” Communications of ACM, vol.28, no.10, pp.1030-1044, Oct.85.

[3] D.Chaum, A.Fiat and M.Naor, “Untraceable electronic cash”, in Advances in Cryp-
tology - CRYPTO ’88 Proceedings, pp.319-327,1990.

[4] N.T.Ferguson, “Single Term Off-Line Coins”,Advances in Cryptology - EUROCRYPT
’93 Proceedings, Springer-Verlag, 1994, pp.318-328

[5] C.Schnorr, “Efficient signature generation for smart cards”, Journal of Cryptology,
4(3):161-174,1991.

[6] W. Mao, “ Blind Certification of Public Keys and Off-Line Electronic Cash”, HP
Laboratories Technical Report, HPL-96-71, May 1996.

7] W.Mao, “Light-weight Micro-Cash for the Internet”, ESORICS’96 Proceedings,
Springer-Verlag, 1996. -

[8] Y.Yacobi, “An efficient off-line cash™, Advances of Cryptology - Asiacrypt 94 Pro-
ceedings , Springer-Verlag, 1994.

251

